
https://doi.org/10.1177/0741088320968061

Written Communication
﻿1–49

© 2020 SAGE Publications
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/0741088320968061

journals.sagepub.com/home/wcx

Article

Writing With Data: A
Study of Coding on a
Data-Journalism Team

Chris Aaron Lindgren1

Abstract
Coding has typically been understood as an engineering practice, where the
meaning of code has discrete boundaries as a technology that does precisely
what it says. Multidisciplinary code studies reframed this technological
perspective by positing code as the latest form of writing, where code’s
meaning is always partial and dependent on situational factors. Building out
from this premise, this article theorizes coding as a form of writing with
data through a qualitative case study of a web developer’s coding on a
data-journalism team. I specifically theorize code as a form of intermediary
writing to examine how his coding to process and analyze data sets involved
the construction and negotiation of emergent problems throughout his
coding tasks. Findings suggest how he integrated previous coding experience
with an emerging sense of how code helped him write and revise the data.
I conclude by considering the implications of these findings and discuss how
writing and code studies could develop mutually informative approaches to
coding as a situated and relational writing activity.

Keywords
code studies, software studies, computational literacy, materiality,
intermediation, case study, data processing

1Virginia Polytechnic Institute and State University, Blacksburg, USA

Corresponding Author:
Chris Aaron Lindgren, Department of English, Virginia Polytechnic Institute and State
University, 207 Shanks Hall, 181 Turner Street NW, Blacksburg, VA 24061, USA.
Email: lindgren@vt.edu

968061WCXXXX10.1177/0741088320968061Written CommunicationLindgren
research-article2020

https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/wcx
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0741088320968061&domain=pdf&date_stamp=2020-11-11

2	 Written Communication 00(0)

So my title is “Frontend Developer.” Title-wise, it’s geared towards
programming. What that means is that I end up building interfaces—essentially
all web-based interfaces. I’d say that’s about 50% of the job. The other 50% is
data-related: data processing, analysis, and just getting data, which requires
more effort than one would think. And most of the time on these activities, I’m
interfacing with our data team or reporters in the newsroom.

—Ray (web developer)1

Bridging Competing Perspectives on Code

Meet Ray: a web developer who works with reporters and editors on a data-
journalism team for a large news organization.2 This team creates data-driven
news stories by integrating large data sets into journalistic inquiries and nar-
rative reporting, publishing stories akin to ProPublica and FiveThirtyEight.
In the epigraph above, drawn from an ethnographic study of Ray’s coding
activity, he described how much of his role involved “building interfaces,”
since his code yielded web-bound data visualizations called interactives.
While Ray has written code in a variety of programming languages, he wrote
with JavaScript (JS) in this context to help reporters more quickly and accu-
rately create these interactives.3 He also used a “building” analogy to describe
the “other 50%” of his job: coding with data sets. Ray never directly described
his coding with data as a text-based reading or writing activity. For instance,
in an observational interview, instead of “reading data,” he described how
data must be “looked at” for multiple reasons. And, instead of “writing code
that helps him write data,” he described data processing as a “reverse-
engineering of the data.” Even so, while Ray’s personal descriptions of his
coding drew on building and engineering analogies, he did not presuppose
that code-as-technology automated away all the meaning making involved in
his processing and analysis work. As he remarked, it “requires more effort
than one would think.”

Throughout the course of the study, I witnessed how Ray’s code-as-tech-
nology perspective seemed to push another dimension of his coding into the
background. Specifically, his coding was supported by large textual data sets
that his code helped him to write differently. For example, coding enabled
Ray to automate the writing of information from files, so he could combine
selected aspects of one set with another. He noted how programming lan-
guages, such as JS, automated certain ways of “reading in” structured data.
Ray used this type of reading to describe how JS automated the parsing of
standardized file formats into JS-specific structured data (see Appendix A).
From this mundane parsing of data files into more malleable JS-structured
content, he wrote code that reduced and transformed data sets from their

Lindgren	 3

original form, so he could conduct analyses important to the changing goals
of the team. By analyzing Ray’s coding as a form of writing jointly with data,
I observed how his coding wrote structured information from varying sources
and origins, which involved dynamic meaning-making strategies to write
new data sets that contextualized information for a project. In this article, I
approach coding as an intermediary form of writing with data, wherein cod-
ers negotiate a tension between coding as a technical process and coding as
situated and relational writing activity.

Complicating Technological Perspectives of Code

Much like Ray’s technological description of his role on the data-journalism
team, code and coding are often defined and understood in terms of what they
build—its outputs: digital tools, interfaces, and technologies. Across much of
the existing research on coding, the theoretical and pragmatic aims of engi-
neering, mathematics, and the sciences dominate its insights. For instance,
Vee (2017) suggests that “[c]omputer science values theoretical principles of
design and abstraction, and software engineering emphasizes modularity,
reusability, and clarity in code” (p. 15). Researchers and practitioners from
computer science and engineering (Brown, 2006; Knuth, 1968; Ko, 2016; Ko
et al., 2015; Mei, 2014; Winograd & Flores, 1986) and the social sciences
(Higgins, 2007; Prior et al., 2006) have expressed similar perspectives.
Existing empirical studies often invest in broader generalizable effects of
software development activities to support coding as the engineering of auto-
mation and development of end-user technologies, more efficient and secure
algorithmic protocols, or more efficient debugging strategies of large soft-
ware systems. These generalizing aims are important for their respective
goals and concepts that demarcate computer science and engineering’s build-
ing of novel automated computational systems in the most efficient way. Yet,
if these engineering aims are the stronghold of theories of code and data, then
it should be no surprise how they are often understood in terms of engineered
automation alone.

Prevailing technological perspectives offer important insights into code,
since code is an object of engineered automation. And yet, this perspective
has not fully captured the complexity of coding as a situated activity. For
instance, computer science and human-computer interaction researchers (Ko
et al., 2007; Sillito et al., 2008) have investigated what questions software
developers ask as they code, but their findings indicate a tight focus on the
technical state of the data as it manifests across a codebase. The broadest
definition of contextual questions included examples, such as “Which [data]
type represents this domain concept or this UI [(user-interface)] element or

4	 Written Communication 00(0)

action?” (Sillito et al., 2008, p. 439). Context is bound by terms, such as
“domain concept,” that maintains relations between coders and code to the
specific technological feature that the code produces during a particular task.
In this article, I illustrate how Ray’s coding involved making sense of com-
putational actions (e.g., how code automates transformative actions on data)
with similar questions across an ensemble of tools, written artifacts, and other
people. Yet I also show how his coding involved his sense of contextual and
situated concerns of the data-journalism team—factors that are normally
deemed outside the scope of the code-as-technology perspective. I argue that
accounting for these features complicates narrow approaches to code and
data and usefully expands what counts as writing and literate practice in a
technical workplace environment.

This case study draws on multidisciplinary scholarship from across soft-
ware studies and literacy studies, which have argued that computer code and
data are forms of writing that exceed the technological perspective of code.
Specifically, I begin by reviewing scholarship that characterizes coding as a
form of writing. In essence, these scholars theorize the meaning of code and
data as situationally and relationally produced by the people coding with
data, as opposed to code and data having discrete technological meaning
bound to computational action alone. This scholarship I review usefully
approaches code as an intermediating textual resource that facilitates mean-
ing making during every situation, but it is yet to provide substantial evidence
about how meaning making happens in situ or how we might go about study-
ing coding empirically. Drawing on this body of work, I then develop a
framework that I use to isolate aspects of Ray’s meaning-making strategies
and theorize them as a form of writing with code and data across multiple
coding technologies.

Code and Data: Textual Resources for Sense
Making

Computer code has often been positioned as the first form of writing that does
what it says with great precision. Kittler (1997, 1999) and later Manovich
(2002) and Galloway (2006) argued that computer code achieves a Saussurian
fixed-code system, since it reduces signification to a binary system of tightly
defined voltage difference: A signifier is either something or nothing. Kittler
made rather bombastic claims about computational media as autonomous and
deterministic of any situation, where writing (and other media) have been
dissolved by these binary operations. Numerous scholars have elaborated
on the transgressions of such claims (Chun, 2005; Vee, 2017; Winograd &
Flores, 1986).

Lindgren	 5

Hayles (2005) conceded that computer code can be reduced to digital
binary signifiers, because a computer’s architecture requires such rigid data
encoding/decoding to function. Yet this is where her agreement ends. She
explains the negative consequences of these reductive claims and classifies
them as the regime of computation, which includes the broader acceptance
that computation, in the form of computer code, “acquires special, indeed
universal, significance” (p. 27). Her rebuttal to the technological perspective
explains how it conflates the machinic encoding/decoding of information
into a broader theory of unambiguity, wherein Kittler’s theory of computa-
tional logic attempts to cultivate a deterministic situation and ignore the per-
sistent integration of communicative labor. Machine code may be figured
through layered binaries, but its meaning and production are not linear pro-
cesses that begin and end as a binary.

Hayles rebuilds the bridge between people, meaning making, and code.
She explained how these factors are always intermediating, that is, interact-
ing, to layer these binaries on new layers of representational units that a per-
son’s code expresses and performs. She described how the complexity of
computational systems often become synonymous with thinking, stating that

[coded] components can be structured so as to build up increasing levels of
complexity, eventually arriving at complexity so deep, multilayered, and
extensive as to simulate the most complex phenomena on earth, from turbulent
flow and multiagent social systems to reasoning processes one might
legitimately call thinking. (p. 17)

Hayles contends that this multilayering of code operations and stored digi-
tal data underlies the myth that code is “the discourse system that mirrors
what happens in nature and that generates nature itself” (p. 27). She posi-
tions “intermediation” (p. 31) as a theory to explain how people, code, writ-
ing, speech, and other forms of media interact with each other in complex
ways that have yet to be studied in more detail.

Other examples of this regime include Manovich’s (2002) claim that com-
putational media is composed of two discrete layers: cultural and computa-
tional. His distinction relies on his concept of transcoding, which he defines
as the computational act to transform data from one format to another. For
instance, word-processing software such as Microsoft Word transcodes type-
writers, the printed page, and its accompanying practices. He argued that
transcoding “the computer layer will affect the cultural layer” (p. 46). This
theory of software has helped scholars examine the relationships between
older and newer media. But, Manovich’s clean separation between culture
and the computational operations of code and data uphold problematic
assumptions about how and where meaning is produced and sustained.

6	 Written Communication 00(0)

Indeed, Manovich asserts that knowing how to code is synonymous with
examining and understanding the entirety of these programmable layers.
Hayles (2005) and Chun (2005) both disagree that an examination of com-
puter code will make visible the complete nature of code and data. Specifically,
Chun isolates the central issue with Manovich’s theorizing of software and
culture as distinct layers, stating that Manovich “focuses on static data and
treats computation as a mere translation” (2005, p. 46) of said data. Code and
data should never be considered static, and code’s computational acts are
deceptively not so discretely autonomous and transparently mapped for all to
know in its entirety. Nothing can be datafied or modeled perfectly, and con-
sequently transcoding must also be considered as intermediated by dynamic
social-technological systems.4

Writing has often been positioned against this regime of computation that
sustains myths about the transparent meaning of code and data. Chun (2011)
links persistent myths about code and data, as being self-contained truths,
with similar myths about writing as generalizable across contexts. She admits
that computer code has automated numerous forms of knowledge labor, such
as the storage, retrieval, and other custom dexterities associated with data. By
dexterities with data, recall how writing code is linked to automating the writ-
ing of structured data with computers. Coding has historical connections with
transforming textual, tabulated punched-card data into digital memory and
back into printed reports. While this history extends beyond the scope of this
article, Admiral Grace Hopper (1978), who is considered one of the initial
people to develop programming language interpreters, once remarked how
the coders of her time were attempting to encode their physical manual dex-
terities with punched-card code that wrote code for them based on their recur-
rent situations processing and analyzing data.5 This automated form of
writing helped coders more quickly compute and write data at greater speed
and scale. Despite this automation, code and data have never and will never
transcend into a Platonic, autonomous model of information, because “cod-
ing still means producing a mark, a writing, open to alteration/iteration rather
than an airtight anchor” (Chun, 2011, p. 25). Material and symbolic action is
still required, which opens up questions about how code is not the source of
information, but, as Chun argued, it is “more accurately a re-source” (p. 25)
that integrates external situational factors.6

These studies offer the tenets to a new research agenda. Specifically, akin
to any utterance, the material presence of code and data does not presume a
determined representation or interpretation—only a durable carrier and trans-
formation of code and data. This durability of code and data often produces a
veneer of more austere textual modes of production and use than traditional
notions of writing. But, just as any other form of writing, the texts that coders

Lindgren	 7

and computers relationally read and write can never capture or contain the
entire account of their production, intent, or uptake. Consequently, the next
goal to understand where the meaning of code and data reside involves study-
ing how coders negotiate the joint textual development between code and
data in relationship to their context. Hayles (2005) theorized the concept of
intermediation to call others to study how code interacts with people and
“legacy” (p. 38) forms of language, such as traditional notions of what counts
as writing. However, media and software studies scholars have yet to provide
a clearer path for applying it. This intermediation across people, technolo-
gies, and media involves a negotiated process of making meaning, where
researchers can account for a wider range of strategies that writers do not
often inscribe in their texts for others to engage with after-the-fact. To pro-
vide such a path, I draw on scholarship from writing studies to construct a
theoretical framework that positions coding as an intermediary form of writ-
ing with data.

Ensembled Text Senses and Distributions: A
Framework for Studying Coding as Writing

To examine the materiality of writing code means understanding that com-
puter code and data cannot be reduced to their linguistic signs, and it means
understanding that code, even as a digital data referent, does not exist as a 1:1
relationship between machine and code. If this 1:1 relationship existed, code
would always be consciously understood by the person writing it, always be
self-evident to other audiences, always be static and never in need of revi-
sion, and thereby always be independent of historical and situational matters.
If such plainness were possible, all code and its structured data would be
premeditated, unchanging, deliberate, and predictable. Rather than conceptu-
alizing code in this way, I instead approach it as an intermediary form of
writing with data that confronts the process of negotiating meaning across
writing activities. I develop this framework with three concepts, which share
a methodological lineage: text sense (Haas, 1996), work ensembles (Bracewell
& Witte, 2003), and spectrum of durability (Clayson, 2018).

Haas (1996) developed the concept of text sense to describe the tacit inter-
nalizations of the writer’s material goal: How writers sensitize themselves to
socially recognizable versions of their texts, such as a business report. Text
sense churned up out of writers having difficulty in adjusting to writing with
novel personal computers of the time (1980s). Specifically, the computer’s
word-processing interface interrupted the relationship between writers and
their habituated reliance on print-based materials that supported their mean-
ing making. Consequently, the writers developed a strategy to print out their

8	 Written Communication 00(0)

texts so far, so they could better understand the text’s development. A focus
on text sense helps to show how writers naturalize their unfolding sense of
text in relation to their efforts to materialize specific goals in the context of
their writing activity.

Empirically, senses are inferred by researchers from the writer’s situated
act to materialize language. Smagorinsky (2001) traced the etymology of
sense from Vygotsky’s (1987) studies of concept formation in children in
order to explain this inferential relationship. Vygotsky, as other scholars
have explained in more detail (Imbrenda, 2016; White, 2014; Witte, 1992),
crafted a Marxist dialectical theory of mediation to better understand how
thought develops in coordination with our social and material conditions.
Smagorinsky explains that Vygotksy posited smysl (sense) as that which is
“yet unarticulated, being instead the storm cloud of thought that produces
the shower of words” (p. 145). Sense accompanies what Vygotsky called
znachenie, which Smagorinsky translates as articulation: “the zone of mean-
ing available in represented form, corresponding to the notion of a sign,
regardless of modality” (p. 145). The previous English translation of znache-
nie was meaning, but Smagorinsky wanted to convey its relational aspects
between people and texts. By tethering sense and articulation, Smagorinsky
(2001) argued that “readers and texts share a cultural cognizance” (p. 146)
that does not predetermine a meaning but supports the potential for shared-
enough understandings. The connection between text sense and articulation
guides studies of writing to focus on how people develop conceptual links
between their text sense and the materialized forms of writing that they
produce.

Smagorinsky translated Vygotsky’s znachenie as “articulation,” but other
writing researchers have developed this concept under a different set of
terms. For instance, instead of using articulation to describe a writer’s exter-
nal representations, Bracewell and Witte (2003) extended Vygotsky’s zone of
meaning to develop a methodological construct of work ensembles. This unit
of analysis pinpoints how writers in professional settings articulate their writ-
ing goals as tasks across ensembles of people, artifacts, and tools. Among
other theoretical and empirical concerns with activity theory,7 they argued
that ensembles help researchers examine the dynamic strategies that writers
use, when articulating goals into tasks. As other studies have found (Bazerman
et al., 2017; Bizzell, 2003; Byrd, 2019; Opel & Hart-Davidson, 2019; Pigg,
2014), writers encounter unpredictable problems when carrying out explicit
goals, and they adapt to these emergent problems with support from dynamic
ensembles. Bizzell (2003) notes this recurrent writing problem, where the
lines blur between text planning and production when writers define their
problems as they interact with their social-material environments (p. 403).

Lindgren	 9

Bracewell and Witte’s focus on tasks and ensembles, and the semiotic
relation between them, is also informed by Hutchins’s (1995) theory of dis-
tributed cognition. Hutchins uses the concept of distributed cognition to high-
light how meaning making is connected to social-material environments:
contextual ensembles of accompanying people, objects, and technologies
(p. 27). Rather than using articulation as the term to describe how writers
materialize their textual activity across a range of material modes, Bracewell
and Witte gesture toward the use of distribution as the central mediational act
across the ensemble. In other words, writers and their ensembles foster inter-
mediary relationships between thinking and writing activity to distribute their
text sense “across a series of representational media” (Hutchins, 1995, as
cited in Bracewell & Witte, 2003, p. 529). What is pertinent for writing stud-
ies is how ensembles guide researchers to examine this relationship between
sense and distribution. Writing goals will be performed as tasks with an
accompanying ensemble, which can be used to examine how writers negoti-
ate the meaning and production of texts when encountering and developing
emergent problems.8

Just as Bracewell and Witte developed the concept of ensemble to study
the intermediated relationship between senses and distributions, Clayson
(2018) developed the spectrum of durability to explore the wide range of
material and embodied distributions that writers produce as they develop
their text sense. Clayson foregrounded the difficulties that writers faced when
“transforming multiple representations into prose” (p. 175) and took up
Hutchins’s (1995) theory of distributed cognition to study the embodied ges-
tures of a team collaboratively planning a report document. Clayson illus-
trated how people negotiate emergent problems during a writing session,
acting, in Hutchins’s (1995) words, as “malleable and adaptable coordinating
tissue” (p. 219) in tandem with their durable ensemble of technological
media.9 In Clayson’s case, this spectrum ranged from ephemeral speech and
accompanying hand gestures, to more durable lists and outlines produced on
a whiteboard, to the eventual drafting of a report genre form for intended
audiences. Across the creation and uses of report-oriented distributed media,
she found that writers shored up a sense of the “‘the text produced so far’”
(Flower & Hayes quoted in Clayson, 2018, p. 158) by externalizing the
report’s shape and content. Clayson’s spectrum usefully highlights the often-
neglected textual representations that importantly help writers develop and
maintain “targeted senses of the texts” (p. 178).

The framework I am developing here brings together three principal con-
cepts that have emerged from studies of writing as a situated activity: text
sense, work ensembles, and spectrum of durability. I draw on these concepts
to explore and theorize what Ray and the team referred to as coding to slice

10	 Written Communication 00(0)

data,10 which Ray performed during data-processing and analysis tasks. In
general terms, slicing involves reducing a data set and transforming it in mul-
tiple ways, whether aggregating its index, computing new variables, or some
combination of both. By studying Ray’s slicing activity as a form of interme-
diary writing, I show how coding is a constructive means whereby he negoti-
ated emergent problems across an ensemble that produced a range of textual
distributions. Specifically, I examine the following questions:

1.	 What textual representations does Ray produce during his coding to
slice data?

2.	 How does Ray’s coding negotiate emergent problems by distributing
texts across an ensemble of people, tools, and artifacts?

3.	 What senses of the code and data as texts can be inferred from his
meaning making work with his coding ensemble?

By studying Ray’s text senses and range of distributions across his coding
ensemble, I describe how he used coding to negotiate emergent problems.
Overall, this case study demonstrates that code does not inscribe all of the
factors that intermediate the written production of code and data.

Case Background: Coding on a Data Team

The present study is drawn from a larger case study of Ray’s coding on a
data-journalism team. In this article, I examine a subset of this broader case
by focusing on a particular form of coding, slicing data sets, to better under-
stand how he negotiated emergent problems throughout the task. Ray’s slic-
ing transformed data across a spectrum of textual distributions in the service
of the news story.

Developers like Ray, whose previous coding history involved database
administration and web development, are now finding careers within an edi-
torial agenda that uses, produces, and contextualizes large swathes of data for
news narrative ends. Data sets have become easier to access, process, ana-
lyze, visualize, and create, thanks in large part to computer coding and the
internet. The data processing that I examine in this article is often character-
ized as the mundane, yet unavoidable, part of the data-driven process. Slicing
requires insight into how to write code that transforms the data structure and
content into a desired new state for analysis, which can prove difficult some-
times. According to a survey of over 16,000 data-science practitioners
(Kaggle, 2017), Ray is not alone. People who code with data sets report that
“dirty data” is the most common barrier that they face at work before their
desired analysis.

Lindgren	 11

Ray telecommuted and worked from his home during my observations. He
stayed in close contact with his team through stand-up morning meetings over
Google Hangout video chats and the Slack messaging application throughout
the work day. He is considered one of two developers on this team, which also
includes an editor, producer, and multiple reporters. However, the reporters
are not officially on the data-journalism team. Instead, reporters work within
the broader newsroom and come to the team for data-driven support. This
study focuses on Ray’s work with the team’s editor, Vince, and producer, Jun,
who worked with Ray in the scope of the reduced data for this article. Their
names have been changed to maintain confidentiality.

Ray’s coding supported the narrative work of reporters and editors on the
data team and other colleagues across the entire news organization. Many of
the results reported in this article concern Ray’s interactions with Jun and
Vince. In a semistructured interview, Ray noted how Jun’s producer role
meant that “she does all types of stuff, which includes some code-related
work [with the data].” He also noted how much of his situations with Jun
involved her doing some initial analysis and then coming to Ray at an insur-
mountable boundary with data or coding. Regarding Vince, Ray stated how
“[Vince] does some coding stuff, too, but his role is mostly just making sure
things are good and accurate.”

During my observational period, Ray worked on roughly 11 projects.11 Four
of the 11 total projects were specifically developed by Ray’s team, three proj-
ects supported reporters from the broader newsroom, and the remaining four
projects supported other organizational services (see Table 1). He coded across
numerous types of projects, each with their own objectives and exigencies.

The coding problems Ray engaged involved some overlapping situational
features. Sometimes a reporter had been working on some data, but they
would ask him to verify the data and visualize it for the news report. Other
times, reporters had only a germ of a story and multiple large sets of data. In
such a situation, Ray’s coding helped reporters develop a data-driven angle to
their news narrative. I also observed Ray code to collect or import data into
databases that archived troves of data sets on dedicated networked servers
from various sources. This case study examines Ray’s coding to slice data
sets, which contextualize the data for the team’s publishing goals. In the next
section, I describe my method to collect and analyze data about his slicing
activity.

Method

In this section, I rationalize the use of a case-study approach, describe the
qualitative method used, and the reduced data analyzed in this article. Finally,

12	 Written Communication 00(0)

Table 1.  Summary of Each Project Observed, Its Broader Categories of Ray’s
Main Objective, and his Goals During the Process.

Project Ray’s main objective Ray’s coding goals

State toxic sites Develop story about state’s
toxic sites management

Process, analyze, visualize
data

City restoration Map reporter’s data about
city’s rebuilding program

Code an interactive map
with the provided data set

Mapping tool Develop embeddable map
tool for reporters

Ray developed this tool

City payroll Develop story from newly
released data

Process, analyze, visualize
data

Transit headway
times

Fix archiving script of local
transit times

Read existing database script
to isolate and resolve issue

Recidivism
archive

Process and archive FOIA-
requested state data on
recidivism

Processed and archived this
data

State campaign
finances

Reporter wanted database of
recurrent data

Ray coded a database that
processes and archives this
data

Health texting
campaign app

Develop a web app that
sends, receives, and stores
SMS texts for an external
journalism team’s week-long
audience activity

Ray developed, tested,
and deployed the web
application

Health texting
campaign data
analysis

After the health texting, Ray
needed to find interesting
findings for the journalism
team to report

Ray processed and analyzed
the audience data

Natural disaster
effect on
transit times

Consult reporter about city
government transit data and
data team’s transit headway
data

None. Only discussed data
over the phone with the
reporter.

Bingo game Refactor (revise) old code for
a web-browser-based Bingo
card game for an upcoming
celebrity event

Ray read through original
HTML, CSS, and JavaScript
code. After reading it, he
revised all these files for
current web standards and
readability.

Data importing
tool

Develop a generalizable
importing tool for large sets
of data

Based on Ray’s work to
archive the political
campaign data, he began
coding a tool for similar
archiving situations

Note. FOIA = Freedom of Information Act, which established a mediating ground for
government organizations to share information with the public. SMS = short message service.

Lindgren	 13

I review the more specific analytical methods that I used to develop findings
reported herein.

Case Rationale

This case falls under the category of what Yin (2014) refers to as unusual
(p. 51). Yin argues that a single case can be rationalized, if it confronts the
“theoretical norms” (p. 52) about a phenomenon. This case study diverges
from normative writing-related activities and objects of study to confront
tacit knowledge claims about what constitutes writing. This case also adheres
to Dyson and Genishi’s (2005) call to illuminate “what some phenomenon
means as it is socially enacted within a particular case” (p. 10). For these
reasons, I took up a case-study methodology to develop new understandings
about computer coding as an intermediating practice to write programmati-
cally with data.

A Modified Grounded-Theory Method: From Expansive to
Contractive Data Collection

Table 2 summarizes the method used to collect broader contextual data and
finer-grained task-based data for the case study. I used a recursive and itera-
tive process of data collection and analysis over the observational period.
These observations incorporated what Farkas and Haas (2012) refer to as a
two-movement modified grounded-theory approach: expansive to contrac-
tive (pp. 86-89).

My expansive movement collected contextual data, including the follow-
ing: screen-recordings and field-notes focusing on his situated activity, semi-
structured interviews about Ray’s coding history and “grand tour” (Spradley,
1979) questions about his professional context, and communicative artifacts
among the team. After about a month of observations, I noticed Ray’s recur-
rent coding activity to slice data sets and began to sample more data with
regard to these activities. For example, my initial semistructured interview
included questions about his everyday workplace, his team, and his role on it
more broadly, which provided some follow-up questions about his sense of
the overall work procedure on the team. This initial expansive effort to valo-
rize the data team’s emic goals and Ray’s recurrent tasks to slice data sets was
followed by the contractive phase to theorize Ray’s situated slicing activity as
a form of writing.

During the second movement, I analyzed the task-based data collected via
think-aloud protocols (TAPs) and retrospective accounts, so I could begin
integrating substantive findings about Ray’s situated slicing activities with

14

T
ab

le
 2

. 
Li

st
 o

f C
om

pl
et

e
M

et
ho

d
an

d
C

ol
le

ct
ed

 D
at

a.

M
et

ho
d

C
om

pl
et

e
se

t
U

se

C
on

te
xt

ua
l/e

xp
an

si
ve

 
Sc

re
en

-r
ec

or
di

ng
s

(a

ud
io

/v
id

eo
; M

ac
ki

ew
ic

z
&

 T
ho

m
ps

on
, 2

01
4;

T

ho
m

ps
on

, 2
00

9)

28
 v

id
eo

s
of

 3
2

to
ta

l o
bs

er
va

tio
ns

O
bs

er
ve

 R
ay

’s
 n

at
ur

al
ly

oc
cu

rr
in

g
co

di
ng

 a
ct

iv
ity

 d
ur

in
g

pr
oj

ec
ts

60
 t

o
12

0
m

in
ut

es
 p

er
 s

es
si

on
C

om
pa

re
 a

ga
in

st
 r

ef
le

ct
iv

e
da

ta

(in
te

rv
ie

w
s)

 
O

bs
er

va
tio

na
l i

nt
er

vi
ew

s
(D

oh
en

y-
Fa

ri
na

, 1
99

3;

K
at

z,
 2

00
2)

28
 q

ue
st

io
ns

 d
er

iv
ed

 fr
om

 c
od

in
g/

co
de

 d
ur

in
g

ob
se

rv
at

io
ns

C
om

pa
re

 R
ay

’s
 p

er
ce

pt
io

ns
 a

ga
in

st

m
y

in
fe

re
nc

es

 
Se

m
is

tr
uc

tu
re

d
in

te
rv

ie
w

s

(S
pr

ad
le

y,
 1

97
9)

T
hr

ee
 ~

90
 m

in
ut

e
in

te
rv

ie
w

s
C

ol
le

ct
 R

ay
’s

 p
er

ce
pt

io
n

of
 h

is
to

ri
ca

l
co

di
ng

 e
xp

er
ie

nc
es

C
om

pa
re

 a
ga

in
st

 in
 s

itu
 d

at
a

 
A

rt
ifa

ct
s

(B
ra

ce
w

el
l &

 W
itt

e,

20
03

; W
ic

km
an

, 2
01

0)
C

od
e

an
d

co
rr

es
po

nd
en

ce
 fr

om
 1

1
pr

oj
ec

ts
C

om
pa

re
 a

rt
ifa

ct
s

ag
ai

ns
t

in
 s

itu
 d

at
a

T
as

k-
ba

se
d/

co
nt

ra
ct

iv
e

 
R

et
ro

sp
ec

tiv
e

ac

co
un

ts

(G
re

en
e

&
 H

ig
gi

ns
, 1

99
4)

T
w

o
sc

re
en

ca
st

s
of

 R
ay

 r
ec

ou
nt

in
g

hi
s

co
di

ng
 d

ec
is

io
ns

 b
y

w
at

ch
in

g
pr

ev
io

us
ly

 r
ec

or
de

d
sc

re
en

 a
ct

iv
ity

C
om

pa
re

 R
ay

’s
 p

er
ce

pt
io

ns
 a

ga
in

st

in
fe

re
nc

es
 a

nd
 h

is
 p

ri
or

 s
ta

te
m

en
ts

 
T

hi
nk

-a
lo

ud
 p

ro
to

co
ls

(S

ch
ri

ve
r,

 1
99

1;

Sw
ar

ts
 e

t
al

.,
19

84
)

Fi
ve

 a
ud

io
/v

id
eo

 r
ec

or
di

ng
s

of

sc
re

en
 a

ct
iv

ity
 d

ur
in

g
a

co
di

ng
 t

as
k

C
om

pa
re

 R
ay

’s
 p

er
ce

pt
io

ns
 a

ga
in

st

in
fe

re
nc

es
 a

nd
 h

is
 p

ri
or

 s
ta

te
m

en
ts

T
hi

nk
-a

lo
ud

 p
ro

to
co

ls
 v

ar
ie

d
in

le

ng
th

: 8
 t

o
20

 m
in

ut
es

Lindgren	 15

prior theories about his text senses and distributions. Specifically, I reduced
the data to two projects, based on available data of slicing tasks: state toxic
sites (TS) and the health-texting (HT) campaign. The analysis of Ray’s cod-
ing was guided by the previously discussed intermediary framework: Haas’s
(1996) text sense, Bracewell and Witte’s (2003) work ensemble, and Clayson’s
(2018) spectrum of durability. This methodology guided my contractive
decisions to analyze Ray’s accompanying people, texts, and tools in relation-
ships to the explicit aims versus the emergent problems.

I analyzed in situ data, such as TAPs and retrospective accounts, to gather
more inferential evidence about Ray’s meaning-making activity, as he
planned and made coding decisions during slicing tasks, and as he con-
structed and overcame issues along the way. Prior writing researchers
(Schriver, 1991; Swarts et al., 1984) discuss how TAPs provide rich in situ
evidence for researchers to theorize writerly processes. I specifically used
TAPs to explore (1) how Ray coordinated his coding ensemble to complete
his slicing tasks; and (2) how he constructed and resolved any problems.
Swarts et al. note that participants are of course limited in what they can ver-
balize, but they highlight how TAPs provide details into the sequencing of a
writer’s process that a researcher would otherwise only wonder about, or how
a text alone lacks this more robust picture of writing (p. 53). I triangulated
TAPs with other data types collected during this period of the study, such as
his discourse with colleagues and observational interviews conducted after
the TAP and during an observational day.

Findings

In this section, I report findings from an analysis of Ray’s coding that pro-
duced data slices. I generated these findings from an analysis of Ray’s situ-
ated coding activity that yielded results about the intermediated relationship
held together by (1) his spectrum of durability, (2) how he distributed his
coding across his writing ensemble, and (3) his text senses of the code and
data as they developed throughout the slicing task.

Slicing Data Across a Spectrum of Durability

Ray’s main coding goal during data processing and analysis tasks included
the slicing of data sets into slices, which played an integral role in developing
news stories. Across four projects, and the available source code within the
units of processing and analyzing, Ray coded 120 total slices of data. His
coding quickly combined, selected, aggregated, and computed the informa-
tion from their original text into a reduced version. Slicing acts often worked

16	 Written Communication 00(0)

in concert with story angles: questions and hunches that the team considered
in pursuit of a more interesting story. Three main types of slices were observed
to be coded by Ray, according to the following types of durability, which I
revised from Clayson’s (2018) original categories: ephemeral, provisional,
and published (see Table 3).

Ephemeral slices were only found during the analysis of the three situated
slicing tasks, since they were either verbal representations by team members
during meetings, such as angles, or they were coding acts to output slices for
quick insight into an issue that cropped up during the task itself. Regarding
the verbalized angles, I observed Ray and Vince transform verbalized angles
into lists with a text editor or their messaging application called Slack. Ray
never saved these lists, as they fulfilled a momentary need to scaffold his
coding goals. While Slack could retain a record of them, only particular
angles that the team refined and deemed of interest were coded into source
files and documentation; hence their ephemeral status. After meetings, Ray
transformed these aforementioned ephemeral representations by sometimes
coding ephemeral slices in JS, which provided him the capacity to read the
data as it was being drafted to code provisional or established slices. These
coded ephemeral slices usually used the console.log() method in JS, which he
either changed within seconds or deleted from the file with no trace of their
production or use. Coded ephemeral slices were important for code testing,
that is, Did I import the data correctly? Is this new function or conditional
statement writing the data slice that I need? However, as I report in the fol-
lowing sections, coded ephemeral slices also enabled Ray to make sense of
the integrity of the data as an ethical representation of the phenomena in
question.

Table 3.  Total Slices as Per Their Type of Durability Coded by Ray Across Four
Projects and Available Data.

Project Slices/
ephemeral

Slices/
provisional

Slices/
established

Total
slices

No. of
code files

Days
observed

City payroll n/a 29 0 29 3 3
Weather relief,

home-rebuilding
program

n/a 12 1 13 2 2

Health-texting
campaign

8 27 7 42 1 3

State toxic sites 21 25 11 36 9 4
Total 29 93 18 120 13 11

Note. The shaded portions emphasize the total number of slices; n/a = not applicable.

Lindgren	 17

Provisional and established slices were more durable and saved within a
JS file as either console logs to output data to the terminal or output a saved
file in either comma-separated value (CSV) or JavaScript Object Notation
(JSON) file formats. The distinguishing factor between provisional and
established slices were whether or not the information from the slice was
published or used in the story, since established suggests the act to establish
a durable record for a wider audience. Provisional slices were preliminary in
their potential narrative use and used within the team’s efforts to make sense
of the data and story. These slices were also either saved as console logs for
output by the source code file or as files in formats such as CSV or JSON. In
so doing, Ray documented major steps in data processing and analysis in both
the code, which included JS functions that produced these more durable data
format files, and in the organization of output files within the project direc-
tory. Essentially, Ray judged these types of provisional slices as important
markers for himself and the team to trace steps back and forth between the
original data and the potential published version. Based on my observations,
Ray also produced an over-abundance of provisional slices, which he thought
could help the team deliberate about the story angle and ultimately yield a
publish-worthy version. He would output numerous files that were not neces-
sarily reviewed in closer detail by himself or the team. According to Ray
(observational interview), he considered such provisions as potentially
important to be ready for alternative narrative pathways.

Out of the 120 total observed slices, only 18 slices were established by the
team to be used in some direct fashion within the news story. In Table 4, I
provide representative samples of each type of slice durability, but specifi-
cally established examples involved coding the finalized slice of information
used within the published news story. For example, in established row (est.i),
Ray’s code output a JSON file with the site’s ID, latitude and longitudinal
coordinates, whether or not the site had an assigned manager, and whether or
not the site was actively managed or not. This information, among another
established slices of contextual data, were used to build an interactive map
for the TS story.

This analysis of Ray’s slicing illustrates how slices are not uniformly cre-
ated nor used or taken up equally. Ray coded ephemeral, provisional, and
established slices for a variety of reasons and transformed data across multi-
ple durable distributions prior to the publishing of the story. Whereas these
findings focus on Ray’s spectrum of durability, the next section reports find-
ings about how Ray negotiated emergent problems by distributing this spec-
trum of texts across his ensemble: How does Ray’s coding negotiate emergent
problems by distributing texts across an ensemble of people, tools, and
artifacts?

18

T
ab

le
 4

. 
Ex

am
pl

e
So

ur
ce

 C
od

e
D

em
on

st
ra

tin
g

Sl
ic

e
D

ur
ab

ili
tie

s:
 E

ph
em

er
al

, P
ro

vi
si

on
al

, a
nd

 E
st

ab
lis

he
d.

 B
or

de
re

d
So

ur
ce

 C
od

e
Si

gn
al

s
an

 A
na

ly
tic

al
 C

od
e

Se
gm

en
t,

if
M

or
e

C
od

e
Is

 Q
uo

te
d.

 E
lli

ps
es

 M
ar

k
O

m
itt

ed
 S

ou
rc

e
C

od
e

fo
r

Br
ev

ity
.

D
ur

ab
ili

ty

pr
op

er
ty

N
ew

s
pr

oj
ec

t
Ex

am
pl

e
so

ur
ce

 c
od

e
se

gm
en

t
C

on
te

xt
ua

l d
es

cr
ip

tio
n

Ep
he

m
er

al
St

at
e

to
xi

c
si

te
s

(e
.i)

(e
.i)

 R
ay

 w
ro

te
 t

he
 lo

g
ou

tp
ut

 t
o

te
st

if

th
e

ac
tiv

e_
ge

oc
od

ed
.c

sv
 fi

le
 h

ad

be
en

 im
po

rt
ed

 a
nd

 r
ea

d
th

e
av

ai
la

bl
e

in
fo

rm
at

io
n.

 T
he

 s
df

sd
fd

df
()

 fu
nc

tio
n

is
 s

up
er

flu
ou

s
an

d
on

ly
 m

ea
nt

 t
o

er
ro

r-
ou

t
th

e
ex

ec
ut

io
n

of
 t

he
 fi

le

af
te

r
th

e
lo

g
ou

tp
ut

, s
o

he
 c

ou
ld

av

oi
d

ot
he

r
ou

tp
ut

s
co

nd
uc

te
d

af
te

r
th

is
 lo

g.
 H

e
in

iti
al

ly
 n

ot
ic

ed
 p

os
si

bl
e

ID
 is

su
es

 w
ith

 t
he

 d
at

a
se

ts
, d

ue
 t

o
th

is
 lo

g
ou

tp
ut

. H
e

su
bs

eq
ue

nt
ly

de

le
te

d
it

fr
om

 t
he

 fi
le

 t
o

pu
rs

ue
 t

hi
s

pr
ob

le
m

.

Ep
he

m
er

al
H

ea
lth

te

xt
in

g
(e

.ii)
(e

.ii)
 R

ay
 o

ut
pu

t
th

e
qu

es
tio

ns
 d

at
a

to

ve
ri

fy
 t

ha
t

hi
s

co
de

 is
 c

re
at

in
g

th
e

de
si

re
d

st
ru

ct
ur

e
an

d
co

nt
en

t.
H

e
ch

an
ge

d
th

e
lo

g
in

pu
t

an
d

fu
nc

tio
n

co
de

 s
ho

rt
ly

 t
he

re
af

te
r

to
 v

er
ify

th

es
e

co
de

 c
ha

ng
es

. T
he

n,
 w

he
n

co
m

pl
et

ed
, h

e
de

le
te

d
th

e
lo

g. (c
on

tin
ue

d)

19

D
ur

ab
ili

ty

pr
op

er
ty

N
ew

s
pr

oj
ec

t
Ex

am
pl

e
so

ur
ce

 c
od

e
se

gm
en

t
C

on
te

xt
ua

l d
es

cr
ip

tio
n

Pr
ov

is
io

na
l

H
ea

lth

te
xt

in
g

(p
.i)

(p
.i)

 R
ay

 t
ak

es
 t

he
 q

ue
st

io
ns

 d
at

a
ob

je
ct

an

d
sl

ic
es

 it
 b

as
ed

 o
n

V
in

ce
’s

 a
ng

le
s:

“F

or
 e

ve
ry

 d
ay

 .
. .

 %
 r

es
po

nd
ed

M

or
e/

Le
ss

/S
am

e
by

 g
oa

l .
 .

. 1
 t

o
5

sc
al

e
av

er
ag

e
by

 g
oa

l .
 .

.”
 (

V
in

ce
,

Sl
ac

k
m

es
sa

ge
).

T
hi

s
qu

es
tio

n-
le

ve
l

sl
ic

e
he

lp
ed

 h
im

 r
ef

in
e

sl
ic

es
 t

o
us

e
in

th

e
re

po
rt

ed
 s

to
ry

.

Pr
ov

is
io

na
l

C
ity

pa

yr
ol

l
(p

.ii)
(p

.ii)
 R

ay
 o

ut
pu

ts
 a

 t
ab

le
 o

f v
al

ue
s

to

th
e

te
rm

in
al

 b
as

ed
 o

n
th

e
pe

r
pe

rs
on

in

de
x

as
 c

ro
ss

-r
ef

er
en

ce
d

w
ith

 t
he

ba

se
-p

ay
 v

al
ue

. H
e

co
pi

es
 a

nd
 p

as
te

s
th

e
te

rm
in

al
 o

ut
pu

t
w

ith
 t

he
 t

ea
m

as

 a
 m

es
sa

ge
 o

n
Sl

ac
k.

 T
he

 s
lic

e
he

lp
ed

 t
he

 t
ea

m
 r

ef
in

e
th

ei
r

an
gl

es
 t

o
pr

od
uc

e
a

be
tt

er
 p

ot
en

tia
l s

to
ry

.

T
ab

le
 4

. 
(c

on
ti

nu
ed

)

(c
on

tin
ue

d)

20

D
ur

ab
ili

ty

pr
op

er
ty

N
ew

s
pr

oj
ec

t
Ex

am
pl

e
so

ur
ce

 c
od

e
se

gm
en

t
C

on
te

xt
ua

l d
es

cr
ip

tio
n

Es
ta

bl
is

he
d

St
at

e
to

xi
c

si
te

s

(e
st

.i)
(e

st
.ii)

 R
ay

 c
od

es
 lo

ca
tio

n
de

ta
ils

 t
ha

t
he

 o
ut

pu
ts

 a
s

a
JS

O
N

 fi
le

 la
te

r
in

th

e
fil

e,
 w

hi
ch

 b
ec

om
e

th
e

va
ri

ab
le

s
re

nd
er

ed
 o

n
th

e
in

te
ra

ct
iv

e
m

ap

in
te

rf
ac

e.

Es
ta

bl
is

he
d

H
ea

lth

te
xt

in
g

(e
st

.ii)
(e

st
.ii)

 R
ay

 o
ut

pu
ts

 a
 C

SV
 a

gg
re

ga
te

d
by

 p
er

 g
oa

l a
nd

 e
ve

nt
ua

lly
 u

se
d

it
to

cr

ea
te

 a
 c

ha
rt

 o
f h

ow
 m

an
y

em
oj

is

us
er

s
us

ed
 p

er
 g

oa
l.

N
ot

e.
 T

he
 s

ha
de

d
po

rt
io

ns
 d

iff
er

en
tia

te
 t

he
 e

xc
er

pt
s

of
 c

od
e;

 C
SV

 =
 c

om
m

a
se

pa
ra

te
d

va
lu

e;
 o

r
JS

O
N

 =
 Ja

va
Sc

ri
pt

 O
bj

ec
t

N
ot

at
io

n.

T
ab

le
 4

. 
(c

on
ti

nu
ed

)

Lindgren	 21

Ray’s Coding Ensemble and Data Distribution Across Explicit
Aims and Emergent Problems

In this section, I analyze of three in situ slicing tasks: one during the TS
project, and two during the HT project. Across these tasks, findings indicate
that Ray devoted more coding acts to emergent problems (229/356 coding
acts), rather than explicit slicing aims (127/356 coding acts; see Table 5).
Coding acts were defined by how Ray coordinated each coding technology
to complete a JS statement or expression (see the glossary of terms in
Appendix A). For example, if Ray instantiated a variable to tally the number
of TS ID matches across two data sets, ‘var matches;’ this constituted a
singular coding act in the service of the explicit aim. If Ray wrote a condi-
tional operator statement that parsed the data set and searched for discrepan-
cies with site IDs, this moment would involve at least three ensembled acts
to handle an emergent problem: (1) reading the data set in Calc spreadsheet
program, (2) coding the conditional statement to output site ID numbers to
the Terminal, and (3) running the script and reading its ID output to verify
the problem.

During each task analyzed, every technology had some general functions.
Across all tasks, Ray used his code editor (Atom), the Terminal, the spread-
sheet application (OpenOffice Calc), and Slack (messaging application) to
complete his coding tasks.12 He conducted the majority of his coding in Atom
(216/356), followed by his coordinated use of the Terminal (58/356), Calc
(46/356), Slack (27/356), and Chrome web browser (9/356). Atom and the
Terminal were integral for Ray’s slicing, because they enabled him to write
JS and “print out” the data if he deemed it useful to understand how his code
transformed the data.

Table 5.  Co-occurrence Results From an Analysis of Ray’s Situated Coding
Acts Across his Coding Ensemble During Three Slicing Tasks: Dimensionalized by
Explicit Aims and Emergent Problems.

Coding ensemble
technology

Explicit
aims

Emergent
problems

Total
coding acts

Atom 92 124 216
Terminal 18 40 58
Calc 6 40 46
Slack 11 16 27
Chrome 0 9 9
Total coding acts 127 229 356

Note. The shaded portions emphasize the total number of coding acts.

22	 Written Communication 00(0)

Ray often used Atom, Calc, and the Terminal in tandem to help him
overcome emergent problems with both the data sets and code. As reported
before, he wrote console.log() statements in Atom, so he could run the
code to print out data slices to the Terminal. These distributions of digital
data into readable texts helped him read to understand how the Node.js
compiler-interpreter13 had transformed the data (or not). If Atom and the
Terminal helped Ray read the data as reduced segments, Calc helped Ray
read and search the data set in its original entirety. For example, a bulk of
his acts in Calc occurred in the emergent problem category (40/46). In some
cases, he used Calc’s text search feature, so he could quickly search the list
for specific data properties. He used Slack and Chrome to handle issues
beyond his personal understanding. He used Chrome twice to reference the
documentation about a particular code-library’s computational method,14
such as Lodash’s _.findWhere(), so he could clarify its syntax and data
parameters.

Ray’s ensembled coding differed across the two projects analyzed in the
present study largely due to how the provenance of the original data differed
greatly. In the TS project, seven data sets were used from the dozens of col-
lected sets from a State Department agency via its website and a Freedom of
Information request, while the HT project used data collected by a web-
texting application that Ray had developed himself and pulled from a data-
base directly. Since Ray had worked extensively with the HT data, prior to
these initial slicing tasks, he already had historical experiences with its prov-
enance, content, and structure. Additionally, before his meeting with the
journalism team on the HT project, Ray had already been slicing the data
based on his own educated guesses about what they might want to investi-
gate. On the TS project, however, Ray had never looked at the data prior to
the task. Consequently, Ray knew the HT data far more extensively than the
TS data, and he had already written some code that processed the data from
the original HT database. This difference had consequences that manifested
in several ways. For example, if the co-occurrence findings are dimension-
alized by project (see Table 6), tallies highlight how Ray distributed far
more emergent problems across his initial TS slicing task versus the two
HT slicing tasks.

In this section and the previous one, results show how Ray distributed
code and data across an ensemble of people, texts, and tools, which helped
him develop and resolve emergent problems with his slicing. In the following
section, I analyze the text sense dimensions of Ray’s textual distributions
across his ensemble during two of the three tasks to infer some of the accom-
panying development of Ray’s senses of the texts—decisions that his code
did not necessarily document for analysis.

Lindgren	 23

Ray’s Coding Senses: Data, Programmatic, Contextual, and
Historical Senses

In this section, I report findings about the range of Ray’s text senses in
relation to a range of ensembled distributions, which is guided by the third
question: What sense of the code and data as texts can be inferred from his
meaning making work with his coding ensemble? Haas (1996) originally
defined text sense in relationship to a writer’s sense of the finalized material
text. Clayson (2018) theorized how text sense develops across a range of
distributed representations of the text by focusing on the spectrum of durabil-
ity produced by writers to support this meaning making. Smagorinsky (2001)
noted how sense often involves a capacious degree of conceptual associa-
tions as a literacy act unfolds. Due to the complex of sense associations that
writers develop across a writing task, I extend the prevailing definition of text
sense beyond the materialized goal alone. I report four text sense properties
specific to Ray’s coding as an intermediary writing of code and data that I call
coding senses. Coding senses refer to any ensembled coding act that signified
insight into the following properties that were not and/or could not necessar-
ily be documented within the texts he produced: data sense, programmatic
sense, contextual sense, and historical sense (see Table 7).

Each section below elaborates on these definitions by first establishing
Ray’s coding situation that describes the events that led up to the analyzed
slicing task. Then, I describe the relationships between Ray’s coding senses
and spectrum of textual distributions during a slicing task.

Task 1: State toxic sites: Transposing data and investigating data set integrity. 
Ray’s initial slicing task on the TS project was simple: match up TSs across

Table 6.  Co-Occurrence Results of Ray’s Situated Distribution Acts:
Dimensionalized by Project.

Project
(total tasks)

Atom Terminal Calc Slack Chrome Total
coding acts

Toxic sites (1)
  Explicit aim 85 9 5 0 0 99
  Emergent problem 48 28 37 16 5 134
Health texting (2)
  Explicit aim 44 9 1 11 0 65
  Emergent problem 39 12 3 0 4 58
Total coding acts 216 58 46 27 9 356

Note. The shaded portions emphasize the contrasting co-occurence tallies of distribution acts
observed during each project’s emergent problems.

24	 Written Communication 00(0)

two files. The matching analysis compared a set of “active” sites, which
included some desired and accurate geocoded values (latitude and longitudi-
nal coordinates) with a set of “abandoned” sites without these values. The
explicit aim: How many more sites need to be geocoded with the future goal
to use those coordinate values for an interactive map? Despite this simplicity,
note how ID issues accrued into 99/134 total emergent problems distributed
across his coding ensemble. Ray’s understanding of the ID problem changed
as he coded outputs of each row as ephemeral slices in the Terminal, where
he subsequently perceived the problem and reviewed the data sets more thor-
oughly in Calc. During the task, he learned how the rows with “duplicate”
(Ray, Slack message to Jun) IDs contained “different” or “changing” col-
umn values for the same site. His insights resulted in the code excerpted in
Figure 1, where lines 22, 30, and 31 in particular account for emergent ID
issues (see Appendix B for an extended excerpt.)

These code segments are textual distributions of Ray’s inquiries and
responses about the data sets and project. On lines 22 and 25 to 36, Ray
arrived at two key ways to “line up” the two sets, so he could also complete
the matching task. Ray’s initial code simply attempted to use an if conditional
statement to count ID matches, but the task warranted more processing work
to complete this simple sum. This alignment writing transposed the “aban-
doned” CSV data set to align it with the structure of the “active” CSV set. In
sum, he wanted both sets to be indexed in the same way, prior to filtering out
matched rows to count.

On line 22, Ray had read the data in both the Terminal and Calc, where he
learned that the two sets had the same PI number that served as a unique ID.
However, they were not uniform. Some of the ID numbers in the abandoned
set had a leading G and leading zeroes, which he learned were vestiges from
older database systems. Furthermore, the abandoned set was not organized by
the PI number, since the column was not listed as the first column name in the

Table 7.  Definitions of Ray’s Coding Senses Inferred From Two Slicing Tasks.

Sense property Definition

Data Any ensembled act that signifies insight into the output data
Programmatic Any ensembled act that signifies insight into how the

code will programmatically transform the data by either
transposing, selecting, computing, or aggregating it

Contextual Any ensembled act that signifies questions, comments, or
insights about the context of the task

Historical Any ensembled act that signifies questions, comments, or
insights about the task in relationship to prior experiences

Lindgren	 25

CSV file. For these reasons, Ray wrote the _.groupBy() function that typi-
cally accepts two main arguments: a collection (abondoned [sic]), and an
iteratee (“PI #”), as per the Lodash (Version 3.8.1) documentation (Sirois &
Hall, 2015). The groupBy() method creates a new object array, which he
assigned to the grouped variable, by iterating through all elements within
abondoned [sic] collection. If the two sets had been more consistent, then
Ray would not have needed to code these excerpted parts to complete his
matching task. Due to these inconsistencies, Ray coded the script to rewrite
every row with some processing techniques (lines 27-36). In what follows, I
report the different coding senses that I was able to infer from multiple
sources about Ray’s decision to develop the code in Figure 1.

Contextual sense.  Recall how this task was his first on the TS project. He
began it by reading the data sets in Calc and messaging Jun about the “con-
text” (Ray, observational interview) of the data for the first 15 minutes. Ray
continued to message Jun as he began to code the matching function, ask-
ing her questions based on new information about the data. He asked Jun
questions about which files were important, since, at the time, the project
folder had over 20 data set files with no documented organization, file-nam-
ing scheme, or notes about which data sets were originally provided by the
state versus those that Jun had already started to process. In an observational

Figure 1.  Excerpt of Ray’s JavaScript code, which he was developing during the
toxic sites project. Line numbers match the original file, as a means to indicate
excluded elements noted within the square brackets.

26	 Written Communication 00(0)

interview, just after his initial messages to Jun about the data, he noted how
he occasionally felt as though he had “no idea about what is going on with
the projects.” He remarked how reporters sometimes did not document their
data work, which often made his onboarding more cumbersome, since he
sometimes came onto projects “after the data has been gathered and looked at
[processed] a little bit.” Before returning to the task, he said that he appreci-
ated any “context” of the data and story: a small “step back to describe it a
little more [the data and project]” helps him more quickly conduct his coding.

From there, Ray toggled in-between Atom, the Terminal, and Calc dozens
of times (refer back to the ensembled results in Tables 5 and 6). Throughout
this task, Ray had printed out the data to the Terminal (ephemeral slices) and
also read it in Calc as he coded this matching slice. In-between these ensem-
bled texts, Ray posed numerous questions to Jun about possible “duplicate”
or “repeating” rows of information about the sites. To shore up more context
about this data problem, Ray and Jun deliberated about the matter throughout
much of the task, which overall used two distinct forms of questions: to clar-
ify (132 instances) or to verify (14 instances) information about the data
set(s). For example, some clarification interactions pertained to the prove-
nance of the data: “Is the data from census reporter?.” The repeating ID issue
blended questions about the original purpose of a particular column with
questions of its integrity. For example, Ray asked about the “retention due
date” column: “It looks like there are some ‘duplicates’ in the abondoned
(sic) data. They are the same but have different ‘retention due date’ (sic). Any
insight on this?” (Slack message). In total, Ray and Jun’s deliberation about
the TS data sets involved 67 deliberative instances. The highest number of
coded clarification interactions about the data integrity involved such ques-
tions about any perceived value discrepancies (21) that were linked to the
repeating ID values. Any suspect discrepancies within the column values
were questioned by Ray, and discussed with Jun, so they could ensure that the
data were accurate, not out of date, and not obscuring the main goal of Ray’s
task. This process exacted an accurate total of site matches across two lists,
as well as identifying any larger issues with the data and its impact on the
developing story.

Programmatic and data senses.  Ray’s clarification and verification ques-
tions did not simply exist in this deliberation in Slack. Ray weaved their
deliberation to clarify and verify the integrity of the data with his coding
across his editor, the terminal, and Calc to match up the site lists. Specifically,
when he wrote the code that transposed the repeating ID rows by bundling the
potentially different information across the two columns into embedded array
lists (Figure 1, lines 30-31). In a retrospective account, which asked him to

Lindgren	 27

account for his ensembled distributions across Atom, the Terminal, and Calc
as he wrote this code segment, he was “going through each column [variable]
and saying, ‘What kind of data is it?.’” For example, he noted questions,
such as Is the column a Boolean (yes/no), a date in need of formatting, or in
this situation a subset list of updated dates, based on the status of the case
manager (summarized responses from Ray). He elaborated that he reviewed
data in the Terminal and Calc to “visually see it [the data set] and then code it
into an array, if it needed to be” (emphasis added). This last item, regarding
the embedded use of Lodash’s _.pluck() method to “code it into an array,”
highlights how such coding senses of the context blended with senses about
how to programmatically rewrite the data amenable to his quick matching
task needs. Indeed, in his second of two uses of the Chrome web browser,
he searched the Lodash website for Lodash’s .pluck() method by name,
reviewed its arguments for a moment, then coded them in Atom to account
for the different information for any already existing ID from the abandoned
set. In sum, his sense of the data—What types and structures will work for
this situation?—were coordinated closely with his programmatic sense about
what the computational methods would do with the data.

Historical senses.  Overall, Ray’s coding during this matching task high-
lights his experience working with data types, structures, formats, as well as
the JS language and its code libraries that help him write and compute with
such data. Across the task, he only consulted documentation about how to
code the data twice, and both times he already knew the names of the meth-
ods before consulting it. Additionally, he verbalized his insights about how
prior experiences have taught him that if he encounters a CSV with repeat-
ing IDs, but different or changing values across rows, it warrants investiga-
tion and coding that handles it, as he put it, “appropriately” (observational
interview). By “appropriately,” he reflected how changing information could
prove either important or not, but data processing was supposed to act as
documentation of all data changes from original to the data ultimately used in
the story. He summed this main objective as coding for himself “six months
from now” (observational interview), knowing that at any time he could be
asked to pull out, look up, and answer how they arrived at their results. Addi-
tionally, after the retrospective account in an observational interview, Ray
also provided a high-level description about the objective of this task:

I’m basically trying to reverse-engineer the data. And we have it in this data
set, but it’s not in the structure that it’s ultimately stored in, or processed.
What’s probable is that there’s a Site table [in SQL15], then there’s multiple
Activities per Site, and that Activity it may, you know, you’ve got your Activity

28	 Written Communication 00(0)

Type, and maybe the Case Manager is for the Activity, so each Activity has a
specific Case Manager for it. But it’s hard to tell, because this “Source
Information” [value] doesn’t change, but that could be Source-based for each
Activity. We don’t know how that fits into it exactly. (emphasis added)

I do not claim that Ray was conscious of his speculation about the original
structure and format of the data during the matching task. However, his ver-
balizing highlights his historical experiences working with data across cod-
ing domains, and how he understands that database exports flatten Structured
Query Language’s (SQL) relational and hierarchical tables, when trans-
formed into a CSV format. In a semistructured interview, he remarked how
CSV files are often referred to as “flat” files, due to their two-dimensional
property. Furthermore, as per a different semistructured interview that
focused on his coding history, he noted how he started out as a database engi-
neer for a large organization, which involved lots of SQL database designing
and querying. While difficult to trace, Ray’s historical experiences coding
with data afforded him the capacity to quickly slice the data, question its
integrity, and provide the team with the desired matching count information.

Task 2: Health-texting campaign: Coding “one niblet of data.”  In this situation,
Ray knew the data very well and had immediate access to it, since he designed
the database and mobile-texting application that collected the data. He devel-
oped an interactive, mobile-texting application that guided over 20,000 peo-
ple through a week of intentional goals to decrease their technology use,
which collected response data. This section describes Ray’s initial meeting
with Vince, the data-team editor, and the journalist team who asked Ray to
create the app. During the meeting, they brainstormed what angles to focus
on for the reported results. Then, I focus on Ray’s transition from the meeting
and list of angles to his initial few coding acts in his code editor.

Prior to the meeting, Ray stated that he had already “pulled out” (observa-
tional video) the exported data from the texting app’s database. In Figure 2
(right), Ray wrote code that imported a “Mongo export,” which looks similar
to JSON, but Ray noted how his import function modified and transposed
certain parts of the data before coding it further in his file. In Figure 2 (left),
he also created a data structure at the top of the file, which he names as his
“places for the data.” These “places” later enabled him to organize the
imported data in the original per Listener structure into a per Question struc-
ture. Later, he assigned tallies of each per Question response within the
data: {} portion. Overall, Ray had much more primary experience with this
data set, being the lone “engineer,” as he put it, of the texting-app and now
processing and analysis code. In this section, I examine Ray’s initial response
to the team meeting that resulted in a list of angles for Ray to code.

Lindgren	 29

As soon as the video-meeting began, one person from the team noted their
initial hunches—mainly directed at Vince. (Recall how Ray telecommutes.)
They were immediately curious about “one niblet of data” (Fieldnote), as
they put it. “I think there’s a story there,” they led on. This “niblet” was an
ordinal question that asked people to rate their overall feeling of being over-
whelmed or not regarding their technology use for the day on a scale of 1 to
5. Amid the quick interchanges between the team and Vince, Ray listed their
possible angles to pursue with the data in a text file (see Figure 3). After about
10 minutes, the meeting adjourned, and Ray shifted his attention to his list.

“You gotta list going there?” I asked Ray (video recording). “Yeah, but I
didn’t actually . . .” His attention diverted back to his laptop, and he navigated
to Vince’s Slack messaging channel and wrote, “Can you send me your notes
from that [meeting]? I didn’t take very good ones” (observational video).

Vince responded with a stream of items that he neatly organized by types
of “Desired data” (observational video; see Figure 4, left). While Vince listed
off angles, Ray jotted down two more angles of his own (see Figure 4, right),
including the requested “niblet.” He reviewed with me how the team were
curious about the percentage of people who noted feeling less overwhelmed
by technology after the first day. This angle was a hopeful talking point for
the show being recorded later that afternoon, while the remaining results
would be reviewed and used for a special report with visualizations the fol-
lowing week.

Ray took a moment to review Vince’s list. I asked him what he was think-
ing. His response interwove coding senses worth quoting at some length:

I’m still trying to get it [Vince’s list] logically in my head. But this, [he hovers
his mouse across the “For every day . . .” section (see Figure 4)], is all for each
day. There’s gotta be a way to go through it all [the question-level data] and

Figure 2.  Example code from Ray’s initial code file, prior to the meeting with the
steam.

30	 Written Communication 00(0)

create all of it [each angle at the day-level] and not do each one [angle] in
particular. We’ve got it [the listener response data] broken down into each day
[daily question already in the existing code file]. . . . [Pauses]. We have these
questions [already written in the code] (see Figure 2, left), so my biggest
problem is given that we have this [per Question] structure, [navigates to his
code editor and scrolls up to a JS object array in results.js file], and per Day
prompts [Pauses] . . . I know this doesn’t answer all of these questions.
[Gestures back to Vince’s list in Slack, but returns quickly to the code editor].
But, we know for day 4, [gestures to line 90 in the results.js], the success
question is the data-type score, so it’s that 1 to 5 question. I can just look

Figure 4.  Partial capture of Vince’s list of angles from the team meeting (left), and
Ray’s list with additional “niblet” angle (right; screen capture of observation video).

Figure 3.  Ray’s list of angles from his meeting with the journalism team (screen
capture of observational video).

Lindgren	 31

through here [data: {}] (see Figure 2) and pull out this information: these
aggregate informations [sic]. Then, I’ll have a fairly big data structure that
basically has all of [gestures back to the list in Slack] these questions [angles].
[Pauses]. I don’t know the best way to output them in a way that makes sense,
but that’s the best that I can do. (Observational video)

After this moment, his coding did much of what he articulated above. He
coded a function within which he could isolate three of the listed angles in
under 20 minutes. He wrote a JS function that incorporated some computa-
tional methods that would “go through” the exported data from the original
database, create a “fairly big data structure,” so he could output “all of it [the
desired angles and the day-level data]” within this additional function in the
existing JS file. In what follows, I describe the coding senses inferred after
this moment, as he coded the slices jotted down in his list.

Programmatic and data senses.  In the moment above, note how Ray verbal-
ized programmatic and data senses. He articulates a data sense by describing
questions’ existing structure and content, which scaffolded his sense about
how to code questions programmatically into his desired slices that respond
to Vince’s list of angles. His data sense was intermediated by his program-
matic sense about how his existing code can potentially transform the data.

In Figure 5, I plotted the initial approximately 6 minutes of Ray’s slicing
task, which occurred just after his above verbalization. I created it by cross-
referencing his coding senses inferred from think-aloud data and this prior ver-
balization of the task. He used his sense of questions as an object with the
desired information to choose his programmatic methods. Since questions
was an object—not an array of objects—he noted how he knew that he could
not use Lodash’s _.map() method, so he used it’s _.each() method instead.
Furthermore, he noted the consequences of using _.map() with questions,
since it would change it into an array. He did not want to do so, since he
was planning on using this segment of the code—demarcated by the comment
“// Create aggregate data”—across other angles.

Figure 5 highlights Ray’s intermediary relationship between data and his
code that performs on data, where the two forms of senses for this task were
tightly bound. In addition to his knowledge about the consequences of using
either _.each() or _.map(), his repeated use of the _.each() method (see
Figure 6, lines 308, 310, and 315) demonstrates how he knew that he needed
to “go through” (Ray in aforementioned observational interview), that is,
traverse, the object’s nested hierarchical structure to arrive at questions’
data: {} “places” (Figure 2, left) to ultimately compute comparative sums
(see Figure 6, lines 317 and 329) between valid and invalid response data.

32	 Written Communication 00(0)

Additionally, his foresight to filter out invalid responses with a String tex-
tual marker, “[[invalid-data]],” and then _.map() the filtered response
data by using the _.groupBy() method (Figure 6, line 325) also further
demonstrates his intermediated sense of the code and data in their joint tex-
tual development. This point is further supported by the fact that he coded
the excerpted code above (Figure 6) without any reference to ephemeral

Sense Types

Data

Programmatic

Contextual

S
la

ck
T

er
m

in
al

A
to

m

4:20 4:25 4:30 4:40 5:00 5:45 6:33 6:40 6:50 7:20 7:40 7:55 9:05 9:28 10:00 10:24 10:30

[S
cr

ol
ls

 u
p

to
 q

ue
st

io
ns

 =
 {

}]
T

he
 s

tr
uc

tu
re

 is
 a

n
ob

je
ct

 w
it

h
ke

ys
;

it
's

 n
ot

 a
n

ar
ra

y
an

d
so

 w
e

ca
n'

t
m

ap
()

 it
.

[W
ri

te
s

_.
ea

ch
()

{}
m

et
ho

d]
 I

f w
e

us
ed

 m
ap

()
, i

t [
m

ap
()

]
w

ou
ld

 tu
rn

 it
 [

q
co

py
 o

f q
ue

st
io

ns
]

in
to

 a
n

ar
ra

y
an

d
w

e
w

an
t t

o
ke

ep
 it

 a
s

an
 o

bj
ec

t.

[H
ov

er
s

m
ou

se
 a

ro
un

d
th

e
li

st
 %

 r
es

po
nd

ed
 …

it
em

s
an

d
sa

ys
,]

 N
ow

 w
e

w
an

t t
o

co
un

t u
p

ea
ch

 r
es

po
ns

e.

S
o

w
e

ca
n
gr
ou
pB
y(
)t

he
 d

at
a

[q
.d
at
a]

 a
nd

 w
e

w
an

t '
re
sp
on
se

'.
…

 S
o

th
at

 w
il

l g
ro

up
 a

ll
 th

e
ro

w
s

in
to

 th
e

re
sp
on
se

th
at

 w
e

ha
ve

A
nd

 th
at

 [
re
sp
on
se

]
w

il
l b

e
an

 o
bj

ec
t o

f a
rr

ay
s.

 A
nd

 w
e

w
an

t t
o

ch
an

ge
 th

at
 in

to
 s

om
et

hi
ng

 m
or

e
su

cc
in

ct

So
 w

e
w

an
t a

 r
es
po
ns
e ,

 w
hi

ch
 w

il
l e

nd
 u

p
be

in
g

th
e

ke
y,

 a
nd

 th
en

 w
e

w
an

t t
he

 c
ou
nt

, w
hi

ch
 w

il
l b

e
a

fa
ct

.

Figure 5.  Temporal chart of Ray’s distributions during an approximately 6-minute
excerpt from a slicing task on the health-texting project (think-aloud protocol).
One coding technology is analytically coded per timestamp (Atom, Terminal, or
Slack), but multiple coding senses can occur per instance (data, programmatic,
contextual). Ray verbalized for each timestamp, but I only included the above
segments to highlight a notable moment.

Lindgren	 33

slices in the Terminal. It was only after this initial 6-minute period that he
decided to print out the data to the Terminal to verify if his code was indeed
acting on his desired behalf of the team. This intermediation of program-
matic and data senses was also evidenced by his prediction that his first
ephemeral slice printed to the Terminal would most likely not provide the
details he wanted to review. As he wrote his first log statement, he noted,

So just to make sure we’re not totally screwing stuff up, we’re just outputting
it to the console, so we can see the output in the command line, but I’m not sure
if it’s going to be nested enough to see what we want to see. Node’s console
statement doesn’t necessarily . . . yeah, it’s not there.

Overall, what code he wrote was intermediary to what data he wanted to
write and read in the Terminal.

Contextual senses.  Ray’s contextual sense was intermediated by the team’s
ephemeral verbalization of their “niblet” angle and Vince’s list of this angle
and others. This ephemeral slice was based on their hunch—a particular value
that they deemed worthy of reporting, if it yielded results that they considered

Figure 6.  Excerpt of Ray’s JavaScript code written during the health-texting
project. Line numbers match the original file, as a means to indicate excluded
elements noted within the square brackets.

34	 Written Communication 00(0)

interesting. It also arguably scaffolded his subsequent coding reported above.
Ray only referred to the list once during this initial 6 minutes, and he did so
to recall the angle of interest at the moment where he coded the slice: “Now
we want to count up each response.” Again, note how his verbalization—
“response” and “count”—resulted in becoming the key and fact for the future
established slice (Figure 6, lines 328-329).

Historical senses.  His historical sense can be inferred from his capacity to
write Node.js forms of JS code with the Lodash code library. In this situa-
tion, he only consulted the Lodash documentation once in relationship to an
issue with his code that filters the invalid responses. Yet, even then, he knew
the name of the method (_.reduce()) beforehand, indicating his prior experi-
ences. Additionally, Ray also had a sense of the nested hierarchical structure
of the exported data and its subsequent placement and structure as the ques-
tions object.

Discussion and Implications

Among the hundreds of slices that Ray coded during this study and dozens
that I observed him produce in situ, his slicing demonstrated an intermediary
relationship between his ensemble and the range of durable representations
that he produced throughout each task to develop his coding senses of the
texts. From discussions and lists of angles, Ray read and wrote code and data
jointly in Atom and the Terminal. He also read data within Calc and consulted
his colleagues on Slack about emergent data problems or his slicing goals. He
occasionally consulted documentation online, when handling more minor
coding syntax issues. Multiple conclusions can be drawn from findings about
how he coordinated this ensemble.

Clayson (2018) proposed three main forms of distribution on a spectrum
of durability: provisional, persistent, and permanent representations (p. 167).
For Clayson, provisional included gestures with no traceable material form
beyond its original expression. She defined persistent as a material form that
is never used within the final document, whereas permanent distributions
were deemed appropriate for the audience. In my analysis, slices and their
production are categorized with the following revised terms: ephemeral, pro-
visional, or established.

I propose these revisions for the following reasons. If Clayson’s initial
provisional category is renamed as ephemeral, it can draw attention to dis-
tributions beyond gesture. Ephemeral describes the fleeting temporal aspect
of certain sense-making distributions, rather than the gestural-only found in
Clayson’s study. Ephemeral also diversifies the range of more fleeting

Lindgren	 35

distributions that may render a text, but only momentarily, as evinced by
Ray’s slicing with momentary uses of the console.log(). I also suggest
replacing persistent with provisional, because while distributions can cer-
tainly be more persistent than others, provisional captures this persistent
property and the intermediated sense-making linked with their use. Indeed,
for Clayson’s report-writers, lists on a whiteboard distributed provisional
segments of the report, while documented slices in Ray’s code as log outputs
or as saved data files offered Ray and the team provisional slices about the
developing aggregate dimensions of the story. Additionally, Clayson coined
the third as permanent, which suggests that the text become fixed and ready
for their audience. I suggest the use of the term established, because perma-
nent suggests just that something out there forever. Established draws atten-
tion to the intermediated labor involved in establishing a text sense as a
configuration of signs (Smagorinsky, 2001; Witte, 1992) deemed ready for
audiences—even if an audience includes a computational system designed to
render an interactive map. I argue that these changes account for a wider
range of forms of writing, including coding, and also foregrounds the inter-
mediated relationships with a writer and their ensemble.

Additionally, Ray’s ensemble and accompanying coding senses supported
decisions about what contextual and historical factors mattered, as he con-
structed and negotiated emergent problems throughout his slicing tasks. In a
data-journalism domain, Ray and his colleagues encountered data sets from
myriad sources with prior purposes, forms, contexts, and content beyond
their initial understanding. This case examined the role of the often-elided
data-processing work to contextualize the data by illustrating Ray’s coding as
rewriting data for new goals and purposes. Ray’s slicing involved much more
than transposing skills, since context came to matter for Ray in surprising
ways. Recall how contextual factors about the data and his coding changed
across projects analyzed above. Projects like TS involved much more effort
on Ray’s part to understand data provenance in relationship with team’s new
goals for it. Conversely, Ray had internalized a sense of the structure, con-
tent, and purposes linked to the HT data, since he originally developed the
app that collected and stored this information for a team within the organiza-
tion. These findings suggest that data-processing and database design may
play a more complicated meaning-making role than the current perception
shared across data-science domains.16 These findings also affirm recent stud-
ies of software systems from the social sciences and humanities (Benjamin,
2019; Bucher, 2018; Noble, 2018; Sano-Franchini, 2018), which highlight
the consequences of neglecting historical, social, material, and situational
factors from the perspective of users. From these findings, future studies
could investigate more closely any patterns about what aspects of context

36	 Written Communication 00(0)

come to matter for the developers and designers of these software systems:
How and when tacit historical and contextual considerations come to matter,
or what assumptions are tacitly operating and in need of more critical exami-
nation. Writing studies offers new research avenues to examine how develop-
ers as writers are limited by their own capacities to perceive and resolve
problems with their code beyond the narrow technological perspective.

There are important limitations to this study to consider as well. First, this
case offers a substantive theory of coding as an intermediary form of writing,
rather than a generalizable one. This limitation, however, is also a possible
strength, since a grounded investigation of coding with an unusual case meth-
odology had yet to have been conducted. The aims of this case study have
been to start the theorizing process and construct new lines of inquiry to
explore and theorize coding as an intermediary form of writing. Second, I
cannot provide intercoder reliability, due to my agreements with Ray’s pro-
fessional organization. I mitigated this constraint by triangulating multiple
types of data sources and checks with Ray that I conducted during observa-
tional interviews. Additionally, findings linked to both ensembled distribu-
tions and senses were also triangulated across the multiple data-types:
combinations of TAPs and screen-recorded activity with interviews, field-
note observations, and retrospective accounts. Future researchers can test the
veracity and boundaries of my proposed terminology across similar or differ-
ent domains of writing, which should include computer coding. Future stud-
ies could also compare slicing activity across data journalism and other data
science contexts, and verify similar instantiations of slicing activity to valo-
rize and enrich explanations about data-processing and analysis.

Future studies would do well to examine coding as an intermediary form
of writing with data, where code is not a discrete technological object, but
rather the dynamic result of ensembled writing activities that coordinate peo-
ple, texts, and tools. This substantive finding should open up further inquiry
that bolsters the premise that computer code cannot be reduced to its linguis-
tic sign or its voltaic-registered sign. For Ray, code did not exist as a discrete
1:1 relationship between machine and code. If that were the case, his code
would have been always understood, always self-evident, never in need of
revision, and always independent of his historical and situational matters. If
such plainness were evident, Ray’s slicing would not have necessitated his
ensembled measures to understand the code and data, his various historical
and contextual senses of the two textual forms, and the developing goals of
the project. By applying this intermediary writing framework, this study
expands what counts as writing and how to define code and data as objects of
study. Future research can examine ensembles, spectrum of durabilities, and
senses to theorize how code and data—and writing in all its forms—are

Lindgren	 37

interconnected across myriad senses and communicative media, rather than
discretely separated from them. By drawing these intermediations together,
writing studies can better explain how and why writers perceive, construct,
and negotiate rhetorical factors through their writing.

Appendix A

Reading Basics of JavaScript, Data Structures, and File Formats
[Ray watches himself review the data set some more in Calc.]
Ray: Again, just trying to determine which fields [in the data set] are multiple
fields—have multiple values. So, I'm looking at the data to visually see it and
then coding it to an array, essentially, if it needs to be. (emphasis added,
Retrospective Account)

The above excerpt embodies an important element of Ray’s slicing activity:
coding to look and see how his code was writing with data. It turns out that this
focus on seeing, an unfortunate abled-body trope, is commonly shared across
coding domains. Prominent practitioner Victor (2013) defined computer cod-
ing as the act of “blindly manipulating symbols” (see 8 minutes, 21 seconds).
Through such a definition, Victor emphasizes how coding involves the persis-
tent editing and rerunning of a program, so a person can “see” and review any
potential changes to the code’s output. This gap between coding and knowing
what the code will do is a central experience of anyone who codes, regardless
of one’s goals. In this case of Ray, he writes code in JS that takes input data in
some format and/or structure, then his coding rewrites that data.

For readerly support, I describe some basic features of the JS program-
ming language and two main data formats for people with little to no coding
experience. Akin to any written language, programming languages include
recognizable scopes of microlevel acts of writing that guide the programmer
and define the computer’s interpretation of the code. For example, in JS,
curly braces {. . .}, square brackets [. . .], and parentheses (. . .) define dif-
ferent forms of computational scope. Without getting mired in the details,
these grammatical marks signal the opening and closing of a variety of opera-
tions. Other marks, such as the semicolon (;) in JS, demarcate the completion
of statements and expressions that perform an operation on data.

In this context, Ray wrote JS in what is called a functional style.
Functional style defines a series of computations on the input data to trans-
form said data as an output. In Figure 7, I offer an annotated example of a JS
function to help any person who may be unfamiliar with JS code and its
functions (Bos, 2019). In this example, it is important to know that data
variables are instantiated into a computer’s memory with the keyword var:

38	 Written Communication 00(0)

var myTotal. The value computed by the calculateBill() function, which
includes “arguments” or values to be used by the function, is returned to
this precise location. The returned value is “assigned” to the variable name,
myTotal. Assignments occur in a right-to-left position. Multiple functions
can be written to perform on data in a single file or across a broader system
of files. Accordingly, digital data are transformed numerous times to arrive
at the explicit output aim for the task, which is the central aim of this
case-study.

Different programming languages share lineages in how data can be
rewritten and rerendered across multiple forms, structures, file formats for
creative and consequential ends. Most of the data sets that Ray inputs into
and changes with his code have become standardized via digital formats. In
other words, computers and high-level programming languages have been
encoded by standards-bodies to assume a particular structure for representing
these digital data as structured lists of information.

In an interview, Ray noted how he prefers CSV files, but he often receives
Microsoft Excel spreadsheet files (.xls) or PDF files from external sources,
such as government entities. CSV have long been used to convert and
exchange spreadsheet file data across numerous other file formats. As the
CSV name suggests, it assumes that the information will be separated by
commas, but it also includes other parsing rule operations that are heavily
influenced by two-dimensional tabulated data sets. The CSV file format

Figure 7.  Labeled example of a JavaScript function (Bos, 2019), which enables
a coder to call it, send it data arguments, transform the data through a specified
computational means, and return it back to the place the function was called.

Lindgren	 39

assumes that people learn and understand that the list has two-dimensions,
rows and columns, which follow from tabulated data: rows as the thing being
observed, and columns as the variable properties of that thing. Additionally,
the first line of the CSV file is defined as the header, which names each col-
umn that denotes the potential variables for use. Overall, CSVs translate
spreadsheets for the digital medium, where best practices expect observations
to be placed along rows and variables about those observations within each
“cell” of their respective column within this two-dimensional table (see
Figure 8).

JSON is named as such, since its development occurred with the JS lan-
guage and its importance to coding languages for the web.17 Regardless of
this language connection, JSON was developed as an “interchangeable for-
mat,” which simply means that it was designed to work across all major lan-
guages; notably in the linguistic family of the C language.18 JSON data are
objects that store an unordered set of keyed name-value pairs. An object is a
particular type of orientation to representing a thing or concept. In contrast to
a CSV, which represents phenomena with two dimensions, a JSON object can
spatially and syntactically represent hierarchical relationships of a noun’s
properties. It does this through establishing an assumed unordered set of key-
value pairings of variable data and their formats, which can nest more objects
with their own key-value pairs.

According to the official JSON (n.d.) introductory page, the basic object
syntax is to denote how an “object begins with {left brace and ends with
}right brace. Each [keyed] name is followed by :colon and the name/value
pairs are separated by [a],comma” (para. 6). For example, a person can be
an object with certain properties, based on the goals, contexts, and needs of
the people collecting and using the data. A person, as a JSON object in
Ray’s HT campaign, might be represented with the following properties,
where ellipses denote additional encapsulated data between the data-type
syntax:

Figure 8.  Example comma-separated values with an overlay of arrows, which
display its “flat,” two-dimensions: horizontal rows and vertical columns. Rows are
considered the indexed observations, except the highlighted first row displays the
“header” row, which defines the variables as columns.

40	 Written Communication 00(0)

{
"phone": "555-555-5555",
"name": "Chris Lindgren",
"state": "VA",
"city": "Blacksburg",
"zip": "24060",
"goal": "news",
"referrer": "email",
"subscribed": True,
"confirmed": True,
"timezone": "America/New_York",
"hourOffset": 0,
"signup": 1,
"received": [{. . .}, . . .],
"sent": [{. . .}, . . .]
},
. . .
{
 . . .
};

In this example, based on the code from Ray’s original web-texting appli-
cation, each person’s phone number indexes them with some other identify-
ing information about the person. Each person also has their own trace of
both received and sent messages, where received are participant responses to
sent messages from the application. For an example railroad diagram, which
shows how the JSON object notation has been designed with general parsing
rules to be observed by languages, see Figure 9.

Overall, these operations and properties of programming languages and
file formats mediate and are mediated by the coders who write with them.
After this quick survey of these standardized features, I wish to emphasize
how they are not ahistorical and decontextual in their invention and revision.
Instead, they are subject to a variety and social-technical factors in perpetual
motion, as is every language and their modalities, as people adapt them to
community needs, goals, values, insights and biases.

Glossary of Key Terms

The below resource is an abridged list of terms used in this article. If needed,
I recommend Mozilla Developer Network’s (2020) more comprehensive ref-
erences about JS.

Lindgren	 41

Array: A sequential list, starting at zero, of data objects of the same type,
whether strings, integers, floats, and so on: [“writing”, “a”, “list”, “of”,
“strings”] or [1, 2, 3]

Assignment: The assignment operator (=) assigns a value to a variable:
var coding = “writing”;

Boolean value: A data type that is assigned to a variable as either true or
false.

Codebase: A large, organized set of source code files that render a soft-
ware system.

Code library: A collection of modular computational methods that coders
can import into their project as a dependency, so they need not write their
own version of a similar method over and over again.

Comma-separated values (CSV): A file format that translates spread-
sheets for the digital medium, where best practices expect observations to be
placed along rows and variables about those observations within each “cell”
of their respective column within this two-dimensional table.

Compiler: A codebase that reads in the source code written by the devel-
oper and translates the entire source submitted into machine code, as opposed
to interpreters.

Figure 9.  Railroad diagrams of parsing rules and elements for two parts of the
JavaScript Object Notation (JSON): Main object’s scope (left) and String data type
(right) (JSON, n/a). Numerous other data types can be used instead of a String, such
as array lists, integers, float numbers, and even another object nested as a “child”
to its “parent.”

42	 Written Communication 00(0)

console.log(): A built-in method in JS that “prints out” data to the con-
sole: console.log(“Hello, World!”); would print out the String Hello,
World!

Data format (also File format): A general term that denotes how data
files follow standardized grammar and syntax rules. See CSV or JSON.

Data structure: A general term to describe the numerous data types that
programming languages have been developed to read, write, store, and use.

Expression: Any unit of code that resolves to a value:
var myDiscipline
var myDiscipline = “Writing” + “Studies”;
Float: A data type of floating-point numbers: 1.1, 3.125, 50.0005, and so

on.
Instantiation: The act to create a new variable placeholder: var writing;
Integer: A data type of whole numbers: 1, 3, 50, and so on.
Interpreter: A codebase that reads in the source code written by the

developer and translates it line-by-line into machine code, as opposed to
compilers.

JavaScript: Many high-level programming languages’ source code are
compiled into computer byte code. JS is contentiously referred to as an inter-
preted language, which differs in that it is not compiled at run-time. For a
more comprehensive description of the JS compiling and interpreters, read
Simpson’s (2014) You Don’t Know JavaScript book series, and specifically
Scopes and Closures. It can be read for free on his Github repository of the
book series: https://github.com/getify/You-Dont-Know-JS.

JavaScript Object Notation (JSON): A file format and data object that
stores an unordered set of keyed name-value pairs: {“intermediary”: [“text
sense”, “ensemble”, “spectrum of durability”]}. An object is a particular type
of orientation to representing a thing or concept.

Map object: A data object with key-value pairs and retains the original
insertion order of its keys:

var tweets = new Map()
tweets.set('1000293845', {tweet: "Hi, everyone. #teamrhetoric", hashtags:

["teamrhetoric"]})
Node.js: According to nodejs.org (2020), Node.js is an “asynchronous

event-driven JS runtime built on Chrome’s V8 JavaScript engine.” It is tech-
nically compiled and interpreted, so it can be run in a terminal and can also
handle server requests, which was not an original feature of the JS language.
In sum, Node.js can handle concurrent connections and mitigates memory
issues with a garbage collector, that is, digital memory not being used, which
JS does not implement. These are more technical matters that warrant their
own examinations.

Lindgren	 43

Operator: A grammatical mark that represents multiple types of opera-
tions: = and += are example form assignment operators; && and || are binary
logical operators; and so on.

String: A data type that represents any sequence of characters encapsu-
lated by quotation marks: “Chris Lindgren.”

Variable: A named value that help contextualize any JS data type: var
myName = “Chris Lindgren”;

Appendix B

More Complete Code Excerpt From the Toxic Sites Slicing Task

Figure 10.  Extended excerpt from Ray’s matching task, during the toxic sites
project. The ellipses denote excluded code. Note how this is an excerpt during the
task, so it only represents that particular moment—not what the code came to be
as a persistent slice within the final project.

44	 Written Communication 00(0)

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research,
authorship, and/or publication of this article: This research was supported by the
University of Minnesota’s Graduate Research Partners Program Fellowship from the
College of Liberal Arts, Affiliates 21st Century Summer Research Fellowship in
Professional and Technical Communication, James L. Brown Semester Fellowship in
Rhetoric, and their Medtronic/Industrial Affiliates Program Fellowship.

Notes

  1.	 All names, places, and artifacts have been altered to maintain confidentiality of
participants in this institutional review board–approved case study (University of
Minnesota No. 1509P78181 & Virginia Tech No. 17-924). This quote by Ray is
from semistructured interview No. 1.

  2.	 Job titles for people who program are many—contentious even. In this article, I
use developer and coder interchangeably, since “Frontend Developer” was Ray’s
official job title. However, I recognize that some titles signal different domains
and levels of experience. For more information about data journalism, see Seth
C. Lewis’s (2015) edited special issue in Digital Journalism on “Journalism in an
Era of Big Data: Cases, Concepts, and Critiques.”

  3.	 At this moment, computer coding remains a relatively unfamiliar practice to
most writing researchers. Considering this gap in experience, I have provided
a basic coding guide specific to Ray’s context, which describes the JS program-
ming language and its data structures and formats in Appendix A. It can be read
either before engaging this article, or it can be used as an as-needed resource.
From this point forward, I assume that the reader has a basic sense about how
to read JS functions and a few data formats (CSV and JSON) and data types
(strings, integers, arrays, etc.) to engage the excerpted materials.

  4.	 See also Roundtree’s (2013) analysis of how scientists developed computer sim-
ulations through data deliberations.

  5.	 See Essinger (2007), Nofre et al. (2014), Rojas (2002), and Wexelblat (1981)
for historical treatments of computer programming languages and coding prac-
tices prior to programming languages. In brief, it involved heaps of punch cards,
sometimes special pseudocode paper for planning how to punch the cards, and
numerous tasks coordinated across people, tools, and machines to facilitate the
process.

  6.	 See Byrd (2019) on racialized logics operating in a coding bootcamp as African
American learners seek to develop coding literacies, and Easter (2020) on gen-
dered logics operating in esoteric programming languages.

Lindgren	 45

  7.	 Bracewell and Witte developed work ensembles from Vygotsky’s mediation
and cultural-historical activity theory, after reviewing the limitations of activity
theory at the time. I do not take up activity theory, but it may offer alternative
frameworks to study coding as writing.

  8.	 It is worth noting one key difference between Vygotsky’s conception of media-
tion from Hutchins’s: Vygotsky theorized conceptual development in terms of
reconciliation (cf. White, 2014): that a person can control their environment
to develop their consciousness. Hutchins (1995, pp. 283-285) argued that rec-
onciliation is not always a consequence of cognition, since people establish
interactions—intermediaries—among their mediating ensemble to complete a
task.

  9.	 In Hutchins’s case, he observed a “computational ritual” of the ship navigation
crew’s fix-cycle. He tested whether or not the crew had developed a “positional
consciousness” (p. 26) in relationship with the mediating structure of the naviga-
tion deck—an insight and research problem not far removed from text sense. An
example of this sense included how an expert quartermaster chief could immedi-
ately sense that a novice plotter’s bearing coordinates was inaccurate on hearing
it (p. 141).

10.	 Multiple participants used “slice” and “slicing” at some point (Ray, Vince, and
Phil), but practitioners across data-driven domains used these terms too. For
example, Microsoft Excel has even produced a feature called “slicers” to denote
the act to select and filter pivot tables.

11.	 This number captures merely what I observed. Additionally, there are other types
of work Ray fulfilled that was difficult and/or not as integral to inscribe, such
as conducting a quick code review for a team member or helping someone think
through a one-off problem about code or data set.

12.	 The team also used Github, which is a version control system to help the team
share and develop their projects remotely. While important to the team, it did not
become a focus for this particular case.

13.	 Ray’s JS is in the runtime Node.js family standard. See the glossary for more
information.

14.	 In this situation, Ray imported the Lodash library (Sirois & Hall, 2019).
According to Lodash’s developers Sirois and Hall (2019) in the “Why Lodash?”
section, it “makes JS easier by taking the hassle out of working with arrays,
numbers, objects, strings, etc.” (para. 1).

15.	 MySQL is a Structured Query Language to design relational databases. It is a
language designed to help structure, add, search, filter, remove, and so on large
amounts of data.

16.	 See Rawson and Muñoz (2019) and Au (2020) for a review of concerns sur-
rounding the limited critical engagement with processing data.

17.	 See Douglas Crockford’s (2011) personal history on the development of JSON
standards.

18.	 See Lévénez’s (n.d.) upkeep of a programming language lineage chart, which
was once featured by O’Reilly Media.

46	 Written Communication 00(0)

References

Au, R. (2020, September 5). Data cleaning IS analysis, not grunt work. Counting
Stuff. https://counting.substack.com/p/data-cleaning-is-analysis-not-grunt

Bazerman, C., Applebee, A. N., Berninger, V., Brandt, D., Graham, S., Matsuda, P.
K., Murphy, S., Rowe, D. W., & Schleppegrell, M. (2017). Taking the long view
on writing development. Research in the Teaching of English, 51(3), 351-360.

Benjamin, R. (2019). Race after technology: Abolitionist tools for the new Jim Code.
Polity.

Bizzell, P. (2003). Cognition, convention, and certainty. In V. Villanueva (Ed.),
Cross-talk in composition theory: A reader (pp. 387-411). National Council of
Teachers of English.

Bos, W. [@wesbos]. (2019, March 14). JavaScript functions visualized [Image attached]
[Tweet]. Twitter. https://twitter.com/wesbos/status/1105907924088565762

Bracewell, R. J., & Witte, S. P. (2003). Tasks, ensembles, and activity: Linkages
between text production and situation of use in the workplace. Written
Communication, 20(4), 511-559. https://doi.org/10.1177/0741088303260691

Brown, B. (2006). “The next line”: Understanding programmers’ work. TeamEthno-
Online, (2), 25-33.

Bucher, T. (2018). If . . . then: Algorithmic power and politics. Oxford University
Press.

Byrd, A. (2019). Between learning and opportunity: A study of African American
coders’ networks of support. Literacy in Composition Studies, 7(2), 31-55.
https://doi.org/10.21623/1.7.2.3

Chun, W. H. K. (2005). On software, or the persistence of visual knowledge. Grey
Room, (18), 26-51. https://doi.org/10.1162/1526381043320741

Chun, W. H. K. (2011). Programmed visions: Software and memory. MIT Press.
https://doi.org/10.7551/mitpress/9780262015424.001.0001

Clayson, A. (2018). Distributed cognition and embodiment in text planning: A situ-
ated study of collaborative writing in the workplace. Written Communication,
35(2), 155-181. https://doi.org/10.1177/0741088317753348

Crockford, D. (2011, August 28). Douglas Crockford: The JSON Saga [YouTube
Video]. YouTube. https://www.youtube.com/watch?v=-C-JoyNuQJs

Doheny-Farina, S. (1993). Research as rhetoric: Confronting the methodological and
ethical problems of research on writing in nonacademic settings. In R. Spilka
(Ed.), Writing in the workplace: New research perspectives (pp. 253-267).
Southern Illinois University Press.

Dyson, A. H., & Genishi, C. (2005). On the case: Approaches to language and lit-
eracy research. Teachers College Press.

Easter, B. (2020). Fully human, fully machine: Rhetorics of digital disembodiment in
programming. Rhetoric Review, 39(2), 202-215. https://doi.org/10.1080/073501
98.2020.1727096

Essinger, J. (2007). Jacquard’s web: How a hand-loom led to the birth of the informa-
tion age. Oxford University Press.

Lindgren	 47

Farkas, K., & Haas, C. (2012). A grounded theory approach for studying writing and
literacy. In K. Powell & P. Takayoshi (Eds.), Practicing research in writing stud-
ies: Reflexive and ethically responsible research (pp. 81-96). Hampton Press.

Galloway, A. R. (2006). Gaming: Essays on algorithmic culture. University of
Minnesota Press.

Greene, S., & Higgins, L. (1994). “Once upon a time”: The use of retrospective
accounts in building theory in composition. In P. Smagorinsky (Ed.), Speaking
about writing: Reflections on research methodology (pp. 20-54). Sage.

Haas, C. (1996). Writing technology: Studies on the materiality of literacy. Lawrence
Erlbaum.

Hayles, K. (2005). My mother was a computer. University of Chicago Press. https://
doi.org/10.7208/chicago/9780226321493.001.0001

Higgins, A. (2007). “Code talk” in soft work. Ethnography, 8(4), 467-484. https://doi.
org/10.1177/1466138107083563

Hopper, G. (1978). Keynote address. In Proceedings of the history of programming
languages conference (pp. 7-19). Association for Computing Machinery. https://
doi.org/10.1145/800025.1198341

Hutchins, E. (1995). Cognition in the wild. MIT Press. https://doi.org/10.7551/
mitpress/1881.001.0001

Imbrenda, J. P. (2016). The blackbird whistling or just after? Vygotsky’s tool and
sign as an analytic for writing. Written Communication, 33(1), 68-91. https://doi.
org/10.1177/0741088315614582

JSON. (n.d.). Introducing JSON. http://www.json.org/
Kaggle. (2017). The state of machine learning and data science [Report]. https://web.

archive.org/web/20181130112939/https://www.kaggle.com/surveys/2017
Katz, S. M. (2002). Ethnographic research. In L. Gurak & M. M. Lay (Eds.), Research

in technical communication (pp. 23-46). Praeger.
Kittler, F. A. (1997). There is no software. In J. Johnston (Ed.), Literature media

information systems (pp. 147-155). G & B Arts International.
Kittler, F. A. (1999). Gramophone, film, typewriter (G. Winthrop-Young & M. Wutz,

Trans.). Stanford University Press.
Knuth, D. E. (1968). The art of computer programming (Vol. 1). Addison-Wesley.
Ko, A. J. (2016). What is a programming language, really? In Proceedings of the

7th international workshop on evaluation and usability of programming lan-
guages and tools (pp. 32-33). Association for Computing Machinery. https://doi.
org/10.1145/3001878.3001880

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated software
development teams. In Proceedings of the 29th international conference on soft-
ware engineering (ICSE’07) (pp. 344-353). Institute of Electrical and Electronics
Engineers. https://doi.org/10.1109/ICSE.2007.45

Ko, A. J., LaToza, T. D., & Burnett, M. M. (2015). A practical guide to controlled
experiments of software engineering tools with human participants. Empirical
Software Engineering, 20(1), 110-141. https://doi.org/10.1007/s10664-013-
9279-3

48	 Written Communication 00(0)

Lévénez, E. (n.d.). Computer languages history. https://www.levenez.com/lang/
Lewis, S. C. (2015). Journalism in an era of big data. Digital Journalism, 3(3),

321-330. https://doi.org/10.1080/21670811.2014.976399
Mackiewicz, J., & Thompson, I. (2014). Instruction, cognitive scaffolding, and

motivational scaffolding. Composition Studies, 42(1), 54-78.
Manovich, L. (2002). The language of new media. MIT Press.
Mei, S. (2014, July 15). Programming is not math. Sarah Mei. http://www.sarahmei.

com/blog/2014/07/15/programming-is-not-math/
Mozilla Developer Network. (2020, August 16). JavaScript: Reference. MDN Web

Docs. https://developer.mozilla.org/en-US/docs/Web/JavaScript
Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism.

New York University Press. https://doi.org/10.2307/j.ctt1pwt9w5
Nofre, D., Priestley, M., & Alberts, G. (2014). When technology became language:

The origins of the linguistic conception of computer programming, 1950-1960.
Technology and Culture, 55(1), 40-75. https://doi.org/10.1353/tech.2014.0031

Opel, D. S., & Hart-Davidson, W. (2019). The primary care clinic as writing space.
Written Communication, 36(3), 348-378. https://doi.org/10.1177/07410883
19839968

Pigg, S. (2014). Emplacing mobile composing habits: A study of academic writ-
ing in networked social spaces. College Composition and Communication, 66(2),
250-275.

Prior, J., Robertson, T., & Leaney, J. (2006). Programming infrastructure and code
production. TeamEthno-Online, (2), 112-120.

Rawson, K., & Muñoz, T. (2019). Against cleaning. In M. K. Gold & L. F. Klein
(Eds.), Debates in the digital humanities. University of Minnesota Press. https://
doi.org/10.5749/j.ctvg251hk.26

Rojas, R. (Ed.). (2002). The first computers: History and architectures. MIT Press.
Roundtree, A. K. (2013). Computer simulation, rhetoric, and the scientific imagination.

Lexington.
Sano-Franchini, J. (2018). Designing outrage, programming discord: A critical inter-

face analysis of Facebook as a campaign technology. Technical Communication,
65(4), 387-410.

Schriver, K. (1991). Plain language for expert or lay audiences: Designing text using
protocol-aided revision (Technical Report No. 46). University of California,
Berkeley & Carnegie Mellon University. https://archive.nwp.org/cs/public/
download/nwp_file/85/TR46.pdf?x-r=pcfile_d

Sillito, J., Murphy, G. C., & De Volder, K. (2008). Asking and answering questions
during a programming change task. IEEE Transactions on Software Engineering,
34(4), 434-451. https://doi.org/10.1109/TSE.2008.26

Simpson, K. (2014). You don’t know JavaScript: Scope and closures. O’Reilly.
Sirois, J.-P., & Hall, Z. (2015). Lodash documentation (Version 3.10.1)

[Documentation]. Lodash. https://lodash.com/docs/3.10.1#groupBy
Sirois, J.-P., & Hall, Z. (2019). Lodash [Overview]. Lodash. https://lodash.com

https://lodash.com

Lindgren	 49

Smagorinsky, P. (2001). If meaning is constructed, what is it made from? Toward
a cultural theory of reading. Review of Educational Research, 71(1), 133-169.
https://doi.org/10.3102/00346543071001133

Spradley, J. P. (1979). Ethnographic interview. Wadsworth, Cengage Learning.
Swarts, H., Flower, L., & Hayes, J. (1984). Designing protocol studies of the writing

process: An introduction. In R. Beach & L. S. Bridwell (Eds.), New directions
in composition research: Perspectives in writing research (pp. 53-71). Guilford
Press.

Thompson, I. (2009). Scaffolding in the writing center: A microanalysis of an expe-
rienced tutor’s verbal and nonverbal tutoring strategies. Written Communication,
26(4), 417-453. https://doi.org/10.1177/0741088309342364

Vee, A. (2017). Coding literacy: How computer programming is changing writing.
MIT Press. https://doi.org/10.7551/mitpress/10655.001.0001

Victor, B. (2013, May 13). Drawing dynamic visualizations [Video]. Stanford HCI
seminar. Vimeo. https://vimeo.com/66085662

Vygotsky, L. (1987). Thinking and speech. In R. Rieber & A. Carton (Eds.), L. S.
Vygotsky, collected works (N. Minick, Trans.; Vol. 1, pp. 39-285). Plenum Press.
(Original work published 1934)

Wexelblat, R. L. (Ed.). (1981). History of programming languages. Academic Press.
White, E. J. (2014). Bakhtinian dialogic and Vygotskian dialectic: Compatibilities

and contradictions in the classroom? Educational Philosophy and Theory, 46(3),
220-236. https://doi.org/10.1111/j.1469-5812.2011.00814.x

Wickman, C. (2010). Writing material in chemical physics research: The laboratory
notebook as locus of technical and textual integration. Written Communication,
27(3), 259-292. https://doi.org/10.1177/0741088310371777

Winograd, T., & Flores, F. (1986). Understanding computers and cognition. Addison-
Wesley.

Witte, S. P. (1992). Context, text, intertext: Toward a constructivist semiotic of
writing. Written Communication, 9(2), 237-308. https://doi.org/10.1177/0741
088392009002003

Yin, R. K. (2014). Case study research and applications. Sage.

Author Biography

Chris A. Lindgren is an Assistant Professor in the Department of English at Virginia
Tech. His research areas include literacy studies, digital cultural rhetoric, and the
rhetorics of data. He teaches in the undergraduate Professional and Technical Writing
program and graduate Rhetoric and Writing program.

